| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsrnbas | Structured version Visualization version GIF version | ||
| Description: The indexed structure product that appears in xpsval 17584 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
| Ref | Expression |
|---|---|
| xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
| xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
| xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| xpsval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| xpsval.k | ⊢ 𝐺 = (Scalar‘𝑅) |
| xpsval.u | ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
| Ref | Expression |
|---|---|
| xpsrnbas | ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.u | . . 3 ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 3 | xpsval.k | . . . . 5 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 4 | 3 | fvexi 6890 | . . . 4 ⊢ 𝐺 ∈ V |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 6 | 2on 8494 | . . . 4 ⊢ 2o ∈ On | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2o ∈ On) |
| 8 | xpsval.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 9 | xpsval.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 10 | fnpr2o 17571 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) |
| 12 | 1, 2, 5, 7, 11 | prdsbas2 17483 | . 2 ⊢ (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))) |
| 13 | fvprif 17575 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) | |
| 14 | 13 | 3expia 1121 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
| 15 | 8, 9, 14 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
| 16 | 15 | imp 406 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) |
| 17 | 16 | fveq2d 6880 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))) |
| 18 | xpsval.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝑅) | |
| 19 | xpsval.y | . . . . . . 7 ⊢ 𝑌 = (Base‘𝑆) | |
| 20 | ifeq12 4519 | . . . . . . 7 ⊢ ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))) | |
| 21 | 18, 19, 20 | mp2an 692 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) |
| 22 | fvif 6892 | . . . . . 6 ⊢ (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) | |
| 23 | 21, 22 | eqtr4i 2761 | . . . . 5 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) |
| 24 | 17, 23 | eqtr4di 2788 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌)) |
| 25 | 24 | ixpeq2dva 8926 | . . 3 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)) |
| 26 | xpsval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 27 | 26 | xpsfrn 17582 | . . 3 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌) |
| 28 | 25, 27 | eqtr4di 2788 | . 2 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = ran 𝐹) |
| 29 | 12, 28 | eqtr2d 2771 | 1 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ifcif 4500 {cpr 4603 〈cop 4607 ran crn 5655 Oncon0 6352 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1oc1o 8473 2oc2o 8474 Xcixp 8911 Basecbs 17228 Scalarcsca 17274 Xscprds 17459 ×s cxps 17520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-prds 17461 |
| This theorem is referenced by: xpsbas 17586 xpsaddlem 17587 xpsadd 17588 xpsmul 17589 xpssca 17590 xpsvsca 17591 xpsless 17592 xpsle 17593 xpsmnd 18755 xpsgrp 19042 xpsrngd 20139 xpsringd 20292 xpstps 23748 xpstopnlem2 23749 xpsdsfn 24316 xpsxmetlem 24318 xpsxmet 24319 xpsdsval 24320 xpsmet 24321 xpsxms 24473 xpsms 24474 |
| Copyright terms: Public domain | W3C validator |