Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsrnbas | Structured version Visualization version GIF version |
Description: The indexed structure product that appears in xpsval 17326 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
xpsval.k | ⊢ 𝐺 = (Scalar‘𝑅) |
xpsval.u | ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
Ref | Expression |
---|---|
xpsrnbas | ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsval.u | . . 3 ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | xpsval.k | . . . . 5 ⊢ 𝐺 = (Scalar‘𝑅) | |
4 | 3 | fvexi 6818 | . . . 4 ⊢ 𝐺 ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
6 | 2on 8342 | . . . 4 ⊢ 2o ∈ On | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2o ∈ On) |
8 | xpsval.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
9 | xpsval.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | fnpr2o 17313 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) | |
11 | 8, 9, 10 | syl2anc 585 | . . 3 ⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) |
12 | 1, 2, 5, 7, 11 | prdsbas2 17225 | . 2 ⊢ (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))) |
13 | fvprif 17317 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) | |
14 | 13 | 3expia 1121 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
15 | 8, 9, 14 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
16 | 15 | imp 408 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) |
17 | 16 | fveq2d 6808 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))) |
18 | xpsval.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝑅) | |
19 | xpsval.y | . . . . . . 7 ⊢ 𝑌 = (Base‘𝑆) | |
20 | ifeq12 4483 | . . . . . . 7 ⊢ ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))) | |
21 | 18, 19, 20 | mp2an 690 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) |
22 | fvif 6820 | . . . . . 6 ⊢ (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) | |
23 | 21, 22 | eqtr4i 2767 | . . . . 5 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) |
24 | 17, 23 | eqtr4di 2794 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌)) |
25 | 24 | ixpeq2dva 8731 | . . 3 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)) |
26 | xpsval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
27 | 26 | xpsfrn 17324 | . . 3 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌) |
28 | 25, 27 | eqtr4di 2794 | . 2 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = ran 𝐹) |
29 | 12, 28 | eqtr2d 2777 | 1 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 ifcif 4465 {cpr 4567 〈cop 4571 ran crn 5601 Oncon0 6281 Fn wfn 6453 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 1oc1o 8321 2oc2o 8322 Xcixp 8716 Basecbs 16957 Scalarcsca 17010 Xscprds 17201 ×s cxps 17262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-prds 17203 |
This theorem is referenced by: xpsbas 17328 xpsaddlem 17329 xpsadd 17330 xpsmul 17331 xpssca 17332 xpsvsca 17333 xpsless 17334 xpsle 17335 xpsmnd 18470 xpsgrp 18739 xpstps 23006 xpstopnlem2 23007 xpsdsfn 23575 xpsxmetlem 23577 xpsxmet 23578 xpsdsval 23579 xpsmet 23580 xpsxms 23735 xpsms 23736 |
Copyright terms: Public domain | W3C validator |