Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsrnbas | Structured version Visualization version GIF version |
Description: The indexed structure product that appears in xpsval 16939 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
xpsval.k | ⊢ 𝐺 = (Scalar‘𝑅) |
xpsval.u | ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
Ref | Expression |
---|---|
xpsrnbas | ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsval.u | . . 3 ⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | xpsval.k | . . . . 5 ⊢ 𝐺 = (Scalar‘𝑅) | |
4 | 3 | fvexi 6682 | . . . 4 ⊢ 𝐺 ∈ V |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
6 | 2on 8132 | . . . 4 ⊢ 2o ∈ On | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 2o ∈ On) |
8 | xpsval.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
9 | xpsval.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
10 | fnpr2o 16926 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) | |
11 | 8, 9, 10 | syl2anc 587 | . . 3 ⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o) |
12 | 1, 2, 5, 7, 11 | prdsbas2 16838 | . 2 ⊢ (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘))) |
13 | fvprif 16930 | . . . . . . . . 9 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) | |
14 | 13 | 3expia 1122 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
15 | 8, 9, 14 | syl2anc 587 | . . . . . . 7 ⊢ (𝜑 → (𝑘 ∈ 2o → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))) |
16 | 15 | imp 410 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → ({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)) |
17 | 16 | fveq2d 6672 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))) |
18 | xpsval.x | . . . . . . 7 ⊢ 𝑋 = (Base‘𝑅) | |
19 | xpsval.y | . . . . . . 7 ⊢ 𝑌 = (Base‘𝑆) | |
20 | ifeq12 4429 | . . . . . . 7 ⊢ ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))) | |
21 | 18, 19, 20 | mp2an 692 | . . . . . 6 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) |
22 | fvif 6684 | . . . . . 6 ⊢ (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)) | |
23 | 21, 22 | eqtr4i 2764 | . . . . 5 ⊢ if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) |
24 | 17, 23 | eqtr4di 2791 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 2o) → (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌)) |
25 | 24 | ixpeq2dva 8515 | . . 3 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)) |
26 | xpsval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
27 | 26 | xpsfrn 16937 | . . 3 ⊢ ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌) |
28 | 25, 27 | eqtr4di 2791 | . 2 ⊢ (𝜑 → X𝑘 ∈ 2o (Base‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘𝑘)) = ran 𝐹) |
29 | 12, 28 | eqtr2d 2774 | 1 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 Vcvv 3397 ∅c0 4209 ifcif 4411 {cpr 4515 〈cop 4519 ran crn 5520 Oncon0 6166 Fn wfn 6328 ‘cfv 6333 (class class class)co 7164 ∈ cmpo 7166 1oc1o 8117 2oc2o 8118 Xcixp 8500 Basecbs 16579 Scalarcsca 16664 Xscprds 16815 ×s cxps 16875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-er 8313 df-map 8432 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-fz 12975 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-plusg 16674 df-mulr 16675 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-hom 16685 df-cco 16686 df-prds 16817 |
This theorem is referenced by: xpsbas 16941 xpsaddlem 16942 xpsadd 16943 xpsmul 16944 xpssca 16945 xpsvsca 16946 xpsless 16947 xpsle 16948 xpsmnd 18060 xpsgrp 18329 xpstps 22554 xpstopnlem2 22555 xpsdsfn 23123 xpsxmetlem 23125 xpsxmet 23126 xpsdsval 23127 xpsmet 23128 xpsxms 23280 xpsms 23281 |
Copyright terms: Public domain | W3C validator |