MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsrnbas Structured version   Visualization version   GIF version

Theorem xpsrnbas 17513
Description: The indexed structure product that appears in xpsval 17512 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsrnbas (𝜑 → ran 𝐹 = (Base‘𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsrnbas
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 xpsval.u . . 3 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 eqid 2732 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 xpsval.k . . . . 5 𝐺 = (Scalar‘𝑅)
43fvexi 6902 . . . 4 𝐺 ∈ V
54a1i 11 . . 3 (𝜑𝐺 ∈ V)
6 2on 8476 . . . 4 2o ∈ On
76a1i 11 . . 3 (𝜑 → 2o ∈ On)
8 xpsval.1 . . . 4 (𝜑𝑅𝑉)
9 xpsval.2 . . . 4 (𝜑𝑆𝑊)
10 fnpr2o 17499 . . . 4 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
118, 9, 10syl2anc 584 . . 3 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
121, 2, 5, 7, 11prdsbas2 17411 . 2 (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
13 fvprif 17503 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
14133expia 1121 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → (𝑘 ∈ 2o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)))
158, 9, 14syl2anc 584 . . . . . . 7 (𝜑 → (𝑘 ∈ 2o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)))
1615imp 407 . . . . . 6 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
1716fveq2d 6892 . . . . 5 ((𝜑𝑘 ∈ 2o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)))
18 xpsval.x . . . . . . 7 𝑋 = (Base‘𝑅)
19 xpsval.y . . . . . . 7 𝑌 = (Base‘𝑆)
20 ifeq12 4545 . . . . . . 7 ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)))
2118, 19, 20mp2an 690 . . . . . 6 if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))
22 fvif 6904 . . . . . 6 (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))
2321, 22eqtr4i 2763 . . . . 5 if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))
2417, 23eqtr4di 2790 . . . 4 ((𝜑𝑘 ∈ 2o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌))
2524ixpeq2dva 8902 . . 3 (𝜑X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌))
26 xpsval.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2726xpsfrn 17510 . . 3 ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)
2825, 27eqtr4di 2790 . 2 (𝜑X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ran 𝐹)
2912, 28eqtr2d 2773 1 (𝜑 → ran 𝐹 = (Base‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  c0 4321  ifcif 4527  {cpr 4629  cop 4633  ran crn 5676  Oncon0 6361   Fn wfn 6535  cfv 6540  (class class class)co 7405  cmpo 7407  1oc1o 8455  2oc2o 8456  Xcixp 8887  Basecbs 17140  Scalarcsca 17196  Xscprds 17387   ×s cxps 17448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-prds 17389
This theorem is referenced by:  xpsbas  17514  xpsaddlem  17515  xpsadd  17516  xpsmul  17517  xpssca  17518  xpsvsca  17519  xpsless  17520  xpsle  17521  xpsmnd  18661  xpsgrp  18938  xpsringd  20138  xpstps  23305  xpstopnlem2  23306  xpsdsfn  23874  xpsxmetlem  23876  xpsxmet  23877  xpsdsval  23878  xpsmet  23879  xpsxms  24034  xpsms  24035  xpsrngd  46666
  Copyright terms: Public domain W3C validator