MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsrnbas Structured version   Visualization version   GIF version

Theorem xpsrnbas 17263
Description: The indexed structure product that appears in xpsval 17262 has the same base as the target of the function 𝐹. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsrnbas (𝜑 → ran 𝐹 = (Base‘𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsrnbas
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 xpsval.u . . 3 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 eqid 2739 . . 3 (Base‘𝑈) = (Base‘𝑈)
3 xpsval.k . . . . 5 𝐺 = (Scalar‘𝑅)
43fvexi 6782 . . . 4 𝐺 ∈ V
54a1i 11 . . 3 (𝜑𝐺 ∈ V)
6 2on 8289 . . . 4 2o ∈ On
76a1i 11 . . 3 (𝜑 → 2o ∈ On)
8 xpsval.1 . . . 4 (𝜑𝑅𝑉)
9 xpsval.2 . . . 4 (𝜑𝑆𝑊)
10 fnpr2o 17249 . . . 4 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
118, 9, 10syl2anc 583 . . 3 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
121, 2, 5, 7, 11prdsbas2 17161 . 2 (𝜑 → (Base‘𝑈) = X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
13 fvprif 17253 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
14133expia 1119 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → (𝑘 ∈ 2o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)))
158, 9, 14syl2anc 583 . . . . . . 7 (𝜑 → (𝑘 ∈ 2o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆)))
1615imp 406 . . . . . 6 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
1716fveq2d 6772 . . . . 5 ((𝜑𝑘 ∈ 2o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆)))
18 xpsval.x . . . . . . 7 𝑋 = (Base‘𝑅)
19 xpsval.y . . . . . . 7 𝑌 = (Base‘𝑆)
20 ifeq12 4482 . . . . . . 7 ((𝑋 = (Base‘𝑅) ∧ 𝑌 = (Base‘𝑆)) → if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆)))
2118, 19, 20mp2an 688 . . . . . 6 if(𝑘 = ∅, 𝑋, 𝑌) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))
22 fvif 6784 . . . . . 6 (Base‘if(𝑘 = ∅, 𝑅, 𝑆)) = if(𝑘 = ∅, (Base‘𝑅), (Base‘𝑆))
2321, 22eqtr4i 2770 . . . . 5 if(𝑘 = ∅, 𝑋, 𝑌) = (Base‘if(𝑘 = ∅, 𝑅, 𝑆))
2417, 23eqtr4di 2797 . . . 4 ((𝜑𝑘 ∈ 2o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = if(𝑘 = ∅, 𝑋, 𝑌))
2524ixpeq2dva 8674 . . 3 (𝜑X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌))
26 xpsval.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2726xpsfrn 17260 . . 3 ran 𝐹 = X𝑘 ∈ 2o if(𝑘 = ∅, 𝑋, 𝑌)
2825, 27eqtr4di 2797 . 2 (𝜑X𝑘 ∈ 2o (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ran 𝐹)
2912, 28eqtr2d 2780 1 (𝜑 → ran 𝐹 = (Base‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  c0 4261  ifcif 4464  {cpr 4568  cop 4572  ran crn 5589  Oncon0 6263   Fn wfn 6425  cfv 6430  (class class class)co 7268  cmpo 7270  1oc1o 8274  2oc2o 8275  Xcixp 8659  Basecbs 16893  Scalarcsca 16946  Xscprds 17137   ×s cxps 17198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-hom 16967  df-cco 16968  df-prds 17139
This theorem is referenced by:  xpsbas  17264  xpsaddlem  17265  xpsadd  17266  xpsmul  17267  xpssca  17268  xpsvsca  17269  xpsless  17270  xpsle  17271  xpsmnd  18406  xpsgrp  18675  xpstps  22942  xpstopnlem2  22943  xpsdsfn  23511  xpsxmetlem  23513  xpsxmet  23514  xpsdsval  23515  xpsmet  23516  xpsxms  23671  xpsms  23672
  Copyright terms: Public domain W3C validator