MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddmnf1 Structured version   Visualization version   GIF version

Theorem xaddmnf1 12622
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 10698 . . 3 -∞ ∈ ℝ*
2 xaddval 12617 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
31, 2mpan2 689 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
4 ifnefalse 4479 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))))
5 mnfnepnf 10697 . . . . . 6 -∞ ≠ +∞
6 ifnefalse 4479 . . . . . 6 (-∞ ≠ +∞ → if(-∞ = +∞, 0, -∞) = -∞)
75, 6ax-mp 5 . . . . 5 if(-∞ = +∞, 0, -∞) = -∞
8 ifnefalse 4479 . . . . . . 7 (-∞ ≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞)))
95, 8ax-mp 5 . . . . . 6 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞))
10 eqid 2821 . . . . . . 7 -∞ = -∞
1110iftruei 4474 . . . . . 6 if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞
129, 11eqtri 2844 . . . . 5 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞
13 ifeq12 4484 . . . . 5 ((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞))
147, 12, 13mp2an 690 . . . 4 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞)
15 ifid 4506 . . . 4 if(𝐴 = -∞, -∞, -∞) = -∞
1614, 15eqtri 2844 . . 3 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞
174, 16syl6eq 2872 . 2 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = -∞)
183, 17sylan9eq 2876 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  ifcif 4467  (class class class)co 7156  0cc0 10537   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   +𝑒 cxad 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-mulcl 10599  ax-i2m1 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-pnf 10677  df-mnf 10678  df-xr 10679  df-xadd 12509
This theorem is referenced by:  xaddnepnf  12631  xaddcom  12634  xnegdi  12642  xleadd1a  12647  xsubge0  12655  xlesubadd  12657  xadddilem  12688  xblss2ps  23011  xblss2  23012
  Copyright terms: Public domain W3C validator