MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddmnf1 Structured version   Visualization version   GIF version

Theorem xaddmnf1 13212
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 11276 . . 3 -∞ ∈ ℝ*
2 xaddval 13207 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
31, 2mpan2 688 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
4 ifnefalse 4540 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))))
5 mnfnepnf 11275 . . . . . 6 -∞ ≠ +∞
6 ifnefalse 4540 . . . . . 6 (-∞ ≠ +∞ → if(-∞ = +∞, 0, -∞) = -∞)
75, 6ax-mp 5 . . . . 5 if(-∞ = +∞, 0, -∞) = -∞
8 ifnefalse 4540 . . . . . . 7 (-∞ ≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞)))
95, 8ax-mp 5 . . . . . 6 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞))
10 eqid 2731 . . . . . . 7 -∞ = -∞
1110iftruei 4535 . . . . . 6 if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞
129, 11eqtri 2759 . . . . 5 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞
13 ifeq12 4546 . . . . 5 ((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞))
147, 12, 13mp2an 689 . . . 4 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞)
15 ifid 4568 . . . 4 if(𝐴 = -∞, -∞, -∞) = -∞
1614, 15eqtri 2759 . . 3 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞
174, 16eqtrdi 2787 . 2 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = -∞)
183, 17sylan9eq 2791 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  ifcif 4528  (class class class)co 7412  0cc0 11114   + caddc 11117  +∞cpnf 11250  -∞cmnf 11251  *cxr 11252   +𝑒 cxad 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-mulcl 11176  ax-i2m1 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-pnf 11255  df-mnf 11256  df-xr 11257  df-xadd 13098
This theorem is referenced by:  xaddnepnf  13221  xaddcom  13224  xnegdi  13232  xleadd1a  13237  xsubge0  13245  xlesubadd  13247  xadddilem  13278  xblss2ps  24128  xblss2  24129
  Copyright terms: Public domain W3C validator