MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddmnf1 Structured version   Visualization version   GIF version

Theorem xaddmnf1 12609
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 10687 . . 3 -∞ ∈ ℝ*
2 xaddval 12604 . . 3 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
31, 2mpan2 690 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))))
4 ifnefalse 4437 . . 3 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))))
5 mnfnepnf 10686 . . . . . 6 -∞ ≠ +∞
6 ifnefalse 4437 . . . . . 6 (-∞ ≠ +∞ → if(-∞ = +∞, 0, -∞) = -∞)
75, 6ax-mp 5 . . . . 5 if(-∞ = +∞, 0, -∞) = -∞
8 ifnefalse 4437 . . . . . . 7 (-∞ ≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞)))
95, 8ax-mp 5 . . . . . 6 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = if(-∞ = -∞, -∞, (𝐴 + -∞))
10 eqid 2798 . . . . . . 7 -∞ = -∞
1110iftruei 4432 . . . . . 6 if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞
129, 11eqtri 2821 . . . . 5 if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞
13 ifeq12 4442 . . . . 5 ((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞))
147, 12, 13mp2an 691 . . . 4 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = if(𝐴 = -∞, -∞, -∞)
15 ifid 4464 . . . 4 if(𝐴 = -∞, -∞, -∞) = -∞
1614, 15eqtri 2821 . . 3 if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞)))) = -∞
174, 16eqtrdi 2849 . 2 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ = -∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))))) = -∞)
183, 17sylan9eq 2853 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  ifcif 4425  (class class class)co 7135  0cc0 10526   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   +𝑒 cxad 12493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-mulcl 10588  ax-i2m1 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pnf 10666  df-mnf 10667  df-xr 10668  df-xadd 12496
This theorem is referenced by:  xaddnepnf  12618  xaddcom  12621  xnegdi  12629  xleadd1a  12634  xsubge0  12642  xlesubadd  12644  xadddilem  12675  xblss2ps  23008  xblss2  23009
  Copyright terms: Public domain W3C validator