Proof of Theorem xaddmnf1
Step | Hyp | Ref
| Expression |
1 | | mnfxr 11032 |
. . 3
⊢ -∞
∈ ℝ* |
2 | | xaddval 12957 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ -∞ ∈ ℝ*) → (𝐴 +𝑒 -∞) = if(𝐴 = +∞, if(-∞ =
-∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 +
-∞)))))) |
3 | 1, 2 | mpan2 688 |
. 2
⊢ (𝐴 ∈ ℝ*
→ (𝐴
+𝑒 -∞) = if(𝐴 = +∞, if(-∞ = -∞, 0,
+∞), if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞)))))) |
4 | | ifnefalse 4471 |
. . 3
⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ =
-∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))))) =
if(𝐴 = -∞,
if(-∞ = +∞, 0, -∞), if(-∞ = +∞, +∞,
if(-∞ = -∞, -∞, (𝐴 + -∞))))) |
5 | | mnfnepnf 11031 |
. . . . . 6
⊢ -∞
≠ +∞ |
6 | | ifnefalse 4471 |
. . . . . 6
⊢ (-∞
≠ +∞ → if(-∞ = +∞, 0, -∞) =
-∞) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢
if(-∞ = +∞, 0, -∞) = -∞ |
8 | | ifnefalse 4471 |
. . . . . . 7
⊢ (-∞
≠ +∞ → if(-∞ = +∞, +∞, if(-∞ = -∞,
-∞, (𝐴 + -∞)))
= if(-∞ = -∞, -∞, (𝐴 + -∞))) |
9 | 5, 8 | ax-mp 5 |
. . . . . 6
⊢
if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))) =
if(-∞ = -∞, -∞, (𝐴 + -∞)) |
10 | | eqid 2738 |
. . . . . . 7
⊢ -∞
= -∞ |
11 | 10 | iftruei 4466 |
. . . . . 6
⊢
if(-∞ = -∞, -∞, (𝐴 + -∞)) = -∞ |
12 | 9, 11 | eqtri 2766 |
. . . . 5
⊢
if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))) =
-∞ |
13 | | ifeq12 4477 |
. . . . 5
⊢
((if(-∞ = +∞, 0, -∞) = -∞ ∧ if(-∞ =
+∞, +∞, if(-∞ = -∞, -∞, (𝐴 + -∞))) = -∞) → if(𝐴 = -∞, if(-∞ =
+∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ =
-∞, -∞, (𝐴 +
-∞)))) = if(𝐴 =
-∞, -∞, -∞)) |
14 | 7, 12, 13 | mp2an 689 |
. . . 4
⊢ if(𝐴 = -∞, if(-∞ =
+∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ =
-∞, -∞, (𝐴 +
-∞)))) = if(𝐴 =
-∞, -∞, -∞) |
15 | | ifid 4499 |
. . . 4
⊢ if(𝐴 = -∞, -∞, -∞)
= -∞ |
16 | 14, 15 | eqtri 2766 |
. . 3
⊢ if(𝐴 = -∞, if(-∞ =
+∞, 0, -∞), if(-∞ = +∞, +∞, if(-∞ =
-∞, -∞, (𝐴 +
-∞)))) = -∞ |
17 | 4, 16 | eqtrdi 2794 |
. 2
⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(-∞ =
-∞, 0, +∞), if(𝐴 = -∞, if(-∞ = +∞, 0,
-∞), if(-∞ = +∞, +∞, if(-∞ = -∞, -∞,
(𝐴 + -∞))))) =
-∞) |
18 | 3, 17 | sylan9eq 2798 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = -∞) |