MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Visualization version   GIF version

Theorem mumullem2 26329
Description: Lemma for mumul 26330. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)

Proof of Theorem mumullem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3095 . . . 4 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
2 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3 simpl1 1190 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
42, 3pccld 16551 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
54nn0red 12294 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
6 simpl2 1191 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
72, 6pccld 16551 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
87nn0red 12294 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ)
9 1red 10976 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℝ)
10 le2add 11457 . . . . . . . 8 ((((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 1 ∈ ℝ)) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
115, 8, 9, 9, 10syl22anc 836 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
12 ax-1ne0 10940 . . . . . . . . . . . 12 1 ≠ 0
13 simpl3 1192 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
1413oveq2d 7291 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = (𝑝 pCnt 1))
153nnzd 12425 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
166nnzd 12425 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
17 pcgcd 16579 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
182, 15, 16, 17syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
19 pc1 16556 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 pCnt 1) = 0)
2019adantl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 1) = 0)
2114, 18, 203eqtr3d 2786 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0)
22 ifid 4499 . . . . . . . . . . . . . . . 16 if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = 1
23 ifeq12 4477 . . . . . . . . . . . . . . . 16 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2422, 23eqtr3id 2792 . . . . . . . . . . . . . . 15 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2524eqeq1d 2740 . . . . . . . . . . . . . 14 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → (1 = 0 ↔ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0))
2621, 25syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = 0))
2726necon3ad 2956 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 ≠ 0 → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
2812, 27mpi 20 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)))
29 ax-1cn 10929 . . . . . . . . . . . . 13 1 ∈ ℂ
305recnd 11003 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℂ)
31 subeq0 11247 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐴) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
3229, 30, 31sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
338recnd 11003 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℂ)
34 subeq0 11247 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐵) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3529, 33, 34sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3632, 35anbi12d 631 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0) ↔ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
3728, 36mtbird 325 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
3837adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
39 eqcom 2745 . . . . . . . . . . 11 ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1))
40 1re 10975 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
4140, 40readdcli 10990 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
4241recni 10989 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℂ
434, 7nn0addcld 12297 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0)
4443nn0red 12294 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ)
4544recnd 11003 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ)
46 subeq0 11247 . . . . . . . . . . . . . . . 16 (((1 + 1) ∈ ℂ ∧ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4847, 39bitrdi 287 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1)))
499recnd 11003 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
5049, 49, 30, 33addsub4d 11379 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))))
5150eqeq1d 2740 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5248, 51bitr3d 280 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5352adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
54 subge0 11488 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
5540, 5, 54sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
56 subge0 11488 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5740, 8, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5855, 57anbi12d 631 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) ↔ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)))
59 resubcl 11285 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
6040, 5, 59sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
61 resubcl 11285 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
6240, 8, 61sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
63 add20 11487 . . . . . . . . . . . . . . . . 17 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐴))) ∧ ((1 − (𝑝 pCnt 𝐵)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6463an4s 657 . . . . . . . . . . . . . . . 16 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) ∧ (0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6564ex 413 . . . . . . . . . . . . . . 15 (((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6660, 62, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6758, 66sylbird 259 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6867imp 407 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6953, 68bitrd 278 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7039, 69bitrid 282 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7170necon3abid 2980 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7238, 71mpbird 256 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
7372ex 413 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
7411, 73jcad 513 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
75 nnz 12342 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
76 nnne0 12007 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
7775, 76jca 512 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
783, 77syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
79 nnz 12342 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
80 nnne0 12007 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
8179, 80jca 512 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
826, 81syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
83 pcmul 16552 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
842, 78, 82, 83syl3anc 1370 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
8584breq1d 5084 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1))
86 1nn0 12249 . . . . . . . 8 1 ∈ ℕ0
87 nn0leltp1 12379 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
8843, 86, 87sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
89 ltlen 11076 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9044, 41, 89sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9185, 88, 903bitrd 305 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9274, 91sylibrd 258 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
9392ralimdva 3108 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
941, 93syl5bir 242 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
95 issqf 26285 . . . . 5 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
96 issqf 26285 . . . . 5 (𝐵 ∈ ℕ → ((μ‘𝐵) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
9795, 96bi2anan9 636 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
98973adant3 1131 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
99 nnmulcl 11997 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
100993adant3 1131 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 · 𝐵) ∈ ℕ)
101 issqf 26285 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
102100, 101syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
10394, 98, 1023imtr4d 294 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) → (μ‘(𝐴 · 𝐵)) ≠ 0))
104103imp 407 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319   gcd cgcd 16201  cprime 16376   pCnt cpc 16537  μcmu 26244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-mu 26250
This theorem is referenced by:  mumul  26330
  Copyright terms: Public domain W3C validator