MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Visualization version   GIF version

Theorem mumullem2 27099
Description: Lemma for mumul 27100. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)

Proof of Theorem mumullem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3106 . . . 4 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
2 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3 simpl1 1189 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
42, 3pccld 16810 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
54nn0red 12555 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
6 simpl2 1190 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
72, 6pccld 16810 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
87nn0red 12555 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ)
9 1red 11237 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℝ)
10 le2add 11718 . . . . . . . 8 ((((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 1 ∈ ℝ)) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
115, 8, 9, 9, 10syl22anc 838 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
12 ax-1ne0 11199 . . . . . . . . . . . 12 1 ≠ 0
13 simpl3 1191 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
1413oveq2d 7430 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = (𝑝 pCnt 1))
153nnzd 12607 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
166nnzd 12607 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
17 pcgcd 16838 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
182, 15, 16, 17syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
19 pc1 16815 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 pCnt 1) = 0)
2019adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 1) = 0)
2114, 18, 203eqtr3d 2775 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0)
22 ifid 4564 . . . . . . . . . . . . . . . 16 if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = 1
23 ifeq12 4542 . . . . . . . . . . . . . . . 16 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2422, 23eqtr3id 2781 . . . . . . . . . . . . . . 15 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2524eqeq1d 2729 . . . . . . . . . . . . . 14 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → (1 = 0 ↔ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0))
2621, 25syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = 0))
2726necon3ad 2948 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 ≠ 0 → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
2812, 27mpi 20 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)))
29 ax-1cn 11188 . . . . . . . . . . . . 13 1 ∈ ℂ
305recnd 11264 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℂ)
31 subeq0 11508 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐴) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
3229, 30, 31sylancr 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
338recnd 11264 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℂ)
34 subeq0 11508 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐵) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3529, 33, 34sylancr 586 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3632, 35anbi12d 630 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0) ↔ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
3728, 36mtbird 325 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
3837adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
39 eqcom 2734 . . . . . . . . . . 11 ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1))
40 1re 11236 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
4140, 40readdcli 11251 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
4241recni 11250 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℂ
434, 7nn0addcld 12558 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0)
4443nn0red 12555 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ)
4544recnd 11264 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ)
46 subeq0 11508 . . . . . . . . . . . . . . . 16 (((1 + 1) ∈ ℂ ∧ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4742, 45, 46sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4847, 39bitrdi 287 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1)))
499recnd 11264 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
5049, 49, 30, 33addsub4d 11640 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))))
5150eqeq1d 2729 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5248, 51bitr3d 281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5352adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
54 subge0 11749 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
5540, 5, 54sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
56 subge0 11749 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5740, 8, 56sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5855, 57anbi12d 630 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) ↔ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)))
59 resubcl 11546 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
6040, 5, 59sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
61 resubcl 11546 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
6240, 8, 61sylancr 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
63 add20 11748 . . . . . . . . . . . . . . . . 17 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐴))) ∧ ((1 − (𝑝 pCnt 𝐵)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6463an4s 659 . . . . . . . . . . . . . . . 16 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) ∧ (0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6564ex 412 . . . . . . . . . . . . . . 15 (((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6660, 62, 65syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6758, 66sylbird 260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6867imp 406 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6953, 68bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7039, 69bitrid 283 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7170necon3abid 2972 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7238, 71mpbird 257 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
7372ex 412 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
7411, 73jcad 512 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
75 nnz 12601 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
76 nnne0 12268 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
7775, 76jca 511 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
783, 77syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
79 nnz 12601 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
80 nnne0 12268 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
8179, 80jca 511 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
826, 81syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
83 pcmul 16811 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
842, 78, 82, 83syl3anc 1369 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
8584breq1d 5152 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1))
86 1nn0 12510 . . . . . . . 8 1 ∈ ℕ0
87 nn0leltp1 12643 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
8843, 86, 87sylancl 585 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
89 ltlen 11337 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9044, 41, 89sylancl 585 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9185, 88, 903bitrd 305 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9274, 91sylibrd 259 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
9392ralimdva 3162 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
941, 93biimtrrid 242 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
95 issqf 27055 . . . . 5 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
96 issqf 27055 . . . . 5 (𝐵 ∈ ℕ → ((μ‘𝐵) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
9795, 96bi2anan9 637 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
98973adant3 1130 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
99 nnmulcl 12258 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
100993adant3 1130 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 · 𝐵) ∈ ℕ)
101 issqf 27055 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
102100, 101syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
10394, 98, 1023imtr4d 294 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) → (μ‘(𝐴 · 𝐵)) ≠ 0))
104103imp 406 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  ifcif 4524   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  0cc0 11130  1c1 11131   + caddc 11133   · cmul 11135   < clt 11270  cle 11271  cmin 11466  cn 12234  0cn0 12494  cz 12580   gcd cgcd 16460  cprime 16633   pCnt cpc 16796  μcmu 27014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-fz 13509  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-gcd 16461  df-prm 16634  df-pc 16797  df-mu 27020
This theorem is referenced by:  mumul  27100
  Copyright terms: Public domain W3C validator