MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Visualization version   GIF version

Theorem mumullem2 27117
Description: Lemma for mumul 27118. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)

Proof of Theorem mumullem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3092 . . . 4 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
2 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
42, 3pccld 16762 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
54nn0red 12443 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
6 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
72, 6pccld 16762 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
87nn0red 12443 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ)
9 1red 11113 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℝ)
10 le2add 11599 . . . . . . . 8 ((((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 1 ∈ ℝ)) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
115, 8, 9, 9, 10syl22anc 838 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
12 ax-1ne0 11075 . . . . . . . . . . . 12 1 ≠ 0
13 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
1413oveq2d 7362 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = (𝑝 pCnt 1))
153nnzd 12495 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
166nnzd 12495 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
17 pcgcd 16790 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
182, 15, 16, 17syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
19 pc1 16767 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 pCnt 1) = 0)
2019adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 1) = 0)
2114, 18, 203eqtr3d 2774 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0)
22 ifid 4513 . . . . . . . . . . . . . . . 16 if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = 1
23 ifeq12 4491 . . . . . . . . . . . . . . . 16 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2422, 23eqtr3id 2780 . . . . . . . . . . . . . . 15 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2524eqeq1d 2733 . . . . . . . . . . . . . 14 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → (1 = 0 ↔ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0))
2621, 25syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = 0))
2726necon3ad 2941 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 ≠ 0 → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
2812, 27mpi 20 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)))
29 ax-1cn 11064 . . . . . . . . . . . . 13 1 ∈ ℂ
305recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℂ)
31 subeq0 11387 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐴) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
3229, 30, 31sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
338recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℂ)
34 subeq0 11387 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐵) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3529, 33, 34sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3632, 35anbi12d 632 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0) ↔ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
3728, 36mtbird 325 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
3837adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
39 eqcom 2738 . . . . . . . . . . 11 ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1))
40 1re 11112 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
4140, 40readdcli 11127 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
4241recni 11126 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℂ
434, 7nn0addcld 12446 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0)
4443nn0red 12443 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ)
4544recnd 11140 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ)
46 subeq0 11387 . . . . . . . . . . . . . . . 16 (((1 + 1) ∈ ℂ ∧ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4847, 39bitrdi 287 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1)))
499recnd 11140 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
5049, 49, 30, 33addsub4d 11519 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))))
5150eqeq1d 2733 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5248, 51bitr3d 281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5352adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
54 subge0 11630 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
5540, 5, 54sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
56 subge0 11630 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5740, 8, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5855, 57anbi12d 632 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) ↔ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)))
59 resubcl 11425 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
6040, 5, 59sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
61 resubcl 11425 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
6240, 8, 61sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
63 add20 11629 . . . . . . . . . . . . . . . . 17 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐴))) ∧ ((1 − (𝑝 pCnt 𝐵)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6463an4s 660 . . . . . . . . . . . . . . . 16 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) ∧ (0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6564ex 412 . . . . . . . . . . . . . . 15 (((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6660, 62, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6758, 66sylbird 260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6867imp 406 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6953, 68bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7039, 69bitrid 283 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7170necon3abid 2964 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7238, 71mpbird 257 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
7372ex 412 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
7411, 73jcad 512 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
75 nnz 12489 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
76 nnne0 12159 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
7775, 76jca 511 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
783, 77syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
79 nnz 12489 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
80 nnne0 12159 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
8179, 80jca 511 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
826, 81syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
83 pcmul 16763 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
842, 78, 82, 83syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
8584breq1d 5099 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1))
86 1nn0 12397 . . . . . . . 8 1 ∈ ℕ0
87 nn0leltp1 12532 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
8843, 86, 87sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
89 ltlen 11214 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9044, 41, 89sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9185, 88, 903bitrd 305 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9274, 91sylibrd 259 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
9392ralimdva 3144 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
941, 93biimtrrid 243 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
95 issqf 27073 . . . . 5 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
96 issqf 27073 . . . . 5 (𝐵 ∈ ℕ → ((μ‘𝐵) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
9795, 96bi2anan9 638 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
98973adant3 1132 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
99 nnmulcl 12149 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
100993adant3 1132 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 · 𝐵) ∈ ℕ)
101 issqf 27073 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
102100, 101syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
10394, 98, 1023imtr4d 294 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) → (μ‘(𝐴 · 𝐵)) ≠ 0))
104103imp 406 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  0cn0 12381  cz 12468   gcd cgcd 16405  cprime 16582   pCnt cpc 16748  μcmu 27032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-mu 27038
This theorem is referenced by:  mumul  27118
  Copyright terms: Public domain W3C validator