MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem2 Structured version   Visualization version   GIF version

Theorem mumullem2 27123
Description: Lemma for mumul 27124. The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)

Proof of Theorem mumullem2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 r19.26 3091 . . . 4 (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
2 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
42, 3pccld 16797 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
54nn0red 12480 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
6 simpl2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
72, 6pccld 16797 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
87nn0red 12480 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℝ)
9 1red 11151 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℝ)
10 le2add 11636 . . . . . . . 8 ((((𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) ∧ (1 ∈ ℝ ∧ 1 ∈ ℝ)) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
115, 8, 9, 9, 10syl22anc 838 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1)))
12 ax-1ne0 11113 . . . . . . . . . . . 12 1 ≠ 0
13 simpl3 1194 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
1413oveq2d 7385 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = (𝑝 pCnt 1))
153nnzd 12532 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
166nnzd 12532 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
17 pcgcd 16825 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
182, 15, 16, 17syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 gcd 𝐵)) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
19 pc1 16802 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → (𝑝 pCnt 1) = 0)
2019adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 1) = 0)
2114, 18, 203eqtr3d 2772 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0)
22 ifid 4525 . . . . . . . . . . . . . . . 16 if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = 1
23 ifeq12 4503 . . . . . . . . . . . . . . . 16 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), 1, 1) = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2422, 23eqtr3id 2778 . . . . . . . . . . . . . . 15 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)))
2524eqeq1d 2731 . . . . . . . . . . . . . 14 ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → (1 = 0 ↔ if((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt 𝐵), (𝑝 pCnt 𝐴), (𝑝 pCnt 𝐵)) = 0))
2621, 25syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)) → 1 = 0))
2726necon3ad 2938 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 ≠ 0 → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
2812, 27mpi 20 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵)))
29 ax-1cn 11102 . . . . . . . . . . . . 13 1 ∈ ℂ
305recnd 11178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℂ)
31 subeq0 11424 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐴) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
3229, 30, 31sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐴)) = 0 ↔ 1 = (𝑝 pCnt 𝐴)))
338recnd 11178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℂ)
34 subeq0 11424 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑝 pCnt 𝐵) ∈ ℂ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3529, 33, 34sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 − (𝑝 pCnt 𝐵)) = 0 ↔ 1 = (𝑝 pCnt 𝐵)))
3632, 35anbi12d 632 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0) ↔ (1 = (𝑝 pCnt 𝐴) ∧ 1 = (𝑝 pCnt 𝐵))))
3728, 36mtbird 325 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
3837adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))
39 eqcom 2736 . . . . . . . . . . 11 ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1))
40 1re 11150 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
4140, 40readdcli 11165 . . . . . . . . . . . . . . . . 17 (1 + 1) ∈ ℝ
4241recni 11164 . . . . . . . . . . . . . . . 16 (1 + 1) ∈ ℂ
434, 7nn0addcld 12483 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0)
4443nn0red 12480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ)
4544recnd 11178 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ)
46 subeq0 11424 . . . . . . . . . . . . . . . 16 (((1 + 1) ∈ ℂ ∧ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℂ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4742, 45, 46sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ (1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
4847, 39bitrdi 287 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1)))
499recnd 11178 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 1 ∈ ℂ)
5049, 49, 30, 33addsub4d 11556 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))))
5150eqeq1d 2731 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((1 + 1) − ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5248, 51bitr3d 281 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
5352adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0))
54 subge0 11667 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
5540, 5, 54sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐴)) ↔ (𝑝 pCnt 𝐴) ≤ 1))
56 subge0 11667 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5740, 8, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (0 ≤ (1 − (𝑝 pCnt 𝐵)) ↔ (𝑝 pCnt 𝐵) ≤ 1))
5855, 57anbi12d 632 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) ↔ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)))
59 resubcl 11462 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
6040, 5, 59sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐴)) ∈ ℝ)
61 resubcl 11462 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐵) ∈ ℝ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
6240, 8, 61sylancr 587 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (1 − (𝑝 pCnt 𝐵)) ∈ ℝ)
63 add20 11666 . . . . . . . . . . . . . . . . 17 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐴))) ∧ ((1 − (𝑝 pCnt 𝐵)) ∈ ℝ ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6463an4s 660 . . . . . . . . . . . . . . . 16 ((((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) ∧ (0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵)))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6564ex 412 . . . . . . . . . . . . . . 15 (((1 − (𝑝 pCnt 𝐴)) ∈ ℝ ∧ (1 − (𝑝 pCnt 𝐵)) ∈ ℝ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6660, 62, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((0 ≤ (1 − (𝑝 pCnt 𝐴)) ∧ 0 ≤ (1 − (𝑝 pCnt 𝐵))) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6758, 66sylbird 260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0))))
6867imp 406 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((1 − (𝑝 pCnt 𝐴)) + (1 − (𝑝 pCnt 𝐵))) = 0 ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
6953, 68bitrd 279 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) = (1 + 1) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7039, 69bitrid 283 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7170necon3abid 2961 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → ((1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ↔ ¬ ((1 − (𝑝 pCnt 𝐴)) = 0 ∧ (1 − (𝑝 pCnt 𝐵)) = 0)))
7238, 71mpbird 257 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) ∧ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1)) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
7372ex 412 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵))))
7411, 73jcad 512 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
75 nnz 12526 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
76 nnne0 12196 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ≠ 0)
7775, 76jca 511 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
783, 77syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0))
79 nnz 12526 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
80 nnne0 12196 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
8179, 80jca 511 . . . . . . . . . 10 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
826, 81syl 17 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
83 pcmul 16798 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
842, 78, 82, 83syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴 · 𝐵)) = ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))
8584breq1d 5112 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1))
86 1nn0 12434 . . . . . . . 8 1 ∈ ℕ0
87 nn0leltp1 12569 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℕ0 ∧ 1 ∈ ℕ0) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
8843, 86, 87sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ 1 ↔ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1)))
89 ltlen 11251 . . . . . . . 8 ((((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ∈ ℝ ∧ (1 + 1) ∈ ℝ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9044, 41, 89sylancl 586 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) < (1 + 1) ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9185, 88, 903bitrd 305 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt (𝐴 · 𝐵)) ≤ 1 ↔ (((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)) ≤ (1 + 1) ∧ (1 + 1) ≠ ((𝑝 pCnt 𝐴) + (𝑝 pCnt 𝐵)))))
9274, 91sylibrd 259 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
9392ralimdva 3145 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (∀𝑝 ∈ ℙ ((𝑝 pCnt 𝐴) ≤ 1 ∧ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
941, 93biimtrrid 243 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1) → ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
95 issqf 27079 . . . . 5 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
96 issqf 27079 . . . . 5 (𝐵 ∈ ℕ → ((μ‘𝐵) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1))
9795, 96bi2anan9 638 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
98973adant3 1132 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) ↔ (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1 ∧ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐵) ≤ 1)))
99 nnmulcl 12186 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
100993adant3 1132 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 · 𝐵) ∈ ℕ)
101 issqf 27079 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
102100, 101syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((μ‘(𝐴 · 𝐵)) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (𝐴 · 𝐵)) ≤ 1))
10394, 98, 1023imtr4d 294 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0) → (μ‘(𝐴 · 𝐵)) ≠ 0))
104103imp 406 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4484   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505   gcd cgcd 16440  cprime 16617   pCnt cpc 16783  μcmu 27038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-mu 27044
This theorem is referenced by:  mumul  27124
  Copyright terms: Public domain W3C validator