| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqrtcval2 | Structured version Visualization version GIF version | ||
| Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43653. (Contributed by RP, 18-May-2024.) |
| Ref | Expression |
|---|---|
| sqrtcval2 | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtcval 43653 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | |
| 2 | ovif2 7440 | . . . . . . 7 ⊢ (i · if((ℑ‘𝐴) < 0, -1, 1)) = if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) | |
| 3 | neg1cn 12102 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 4 | ax-icn 11057 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 5 | 4 | mulm1i 11554 | . . . . . . . . 9 ⊢ (-1 · i) = -i |
| 6 | 3, 4, 5 | mulcomli 11113 | . . . . . . . 8 ⊢ (i · -1) = -i |
| 7 | 4 | mulridi 11108 | . . . . . . . 8 ⊢ (i · 1) = i |
| 8 | ifeq12 4492 | . . . . . . . 8 ⊢ (((i · -1) = -i ∧ (i · 1) = i) → if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i)) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i) |
| 10 | 2, 9 | eqtr2i 2754 | . . . . . 6 ⊢ if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1)) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1))) |
| 12 | 11 | oveq1d 7356 | . . . 4 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) |
| 13 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → i ∈ ℂ) |
| 14 | neg1rr 12103 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 15 | 1re 11104 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | 14, 15 | ifcli 4521 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ) |
| 18 | 17 | recnd 11132 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ) |
| 19 | sqrtcvallem3 43650 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | |
| 20 | 19 | recnd 11132 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ) |
| 21 | 13, 18, 20 | mulassd 11127 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 22 | 12, 21 | eqtrd 2765 | . . 3 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 23 | 22 | oveq2d 7357 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) |
| 24 | 1, 23 | eqtr4d 2768 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ifcif 4473 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 1c1 10999 ici 11000 + caddc 11001 · cmul 11003 < clt 11138 − cmin 11336 -cneg 11337 / cdiv 11766 2c2 12172 ℜcre 14996 ℑcim 14997 √csqrt 15132 abscabs 15133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |