Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval2 Structured version   Visualization version   GIF version

Theorem sqrtcval2 43615
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43614. (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval2 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))

Proof of Theorem sqrtcval2
StepHypRef Expression
1 sqrtcval 43614 . 2 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
2 ovif2 7452 . . . . . . 7 (i · if((ℑ‘𝐴) < 0, -1, 1)) = if((ℑ‘𝐴) < 0, (i · -1), (i · 1))
3 neg1cn 12131 . . . . . . . . 9 -1 ∈ ℂ
4 ax-icn 11087 . . . . . . . . 9 i ∈ ℂ
54mulm1i 11583 . . . . . . . . 9 (-1 · i) = -i
63, 4, 5mulcomli 11143 . . . . . . . 8 (i · -1) = -i
74mulridi 11138 . . . . . . . 8 (i · 1) = i
8 ifeq12 4497 . . . . . . . 8 (((i · -1) = -i ∧ (i · 1) = i) → if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i))
96, 7, 8mp2an 692 . . . . . . 7 if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i)
102, 9eqtr2i 2753 . . . . . 6 if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1))
1110a1i 11 . . . . 5 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1)))
1211oveq1d 7368 . . . 4 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))
134a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
14 neg1rr 12132 . . . . . . . 8 -1 ∈ ℝ
15 1re 11134 . . . . . . . 8 1 ∈ ℝ
1614, 15ifcli 4526 . . . . . . 7 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
1716a1i 11 . . . . . 6 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
1817recnd 11162 . . . . 5 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
19 sqrtcvallem3 43611 . . . . . 6 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
2019recnd 11162 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2113, 18, 20mulassd 11157 . . . 4 (𝐴 ∈ ℂ → ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
2212, 21eqtrd 2764 . . 3 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
2322oveq2d 7369 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
241, 23eqtr4d 2767 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033   < clt 11168  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cre 15022  cim 15023  csqrt 15158  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator