| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqrtcval2 | Structured version Visualization version GIF version | ||
| Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43614. (Contributed by RP, 18-May-2024.) |
| Ref | Expression |
|---|---|
| sqrtcval2 | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtcval 43614 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | |
| 2 | ovif2 7452 | . . . . . . 7 ⊢ (i · if((ℑ‘𝐴) < 0, -1, 1)) = if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) | |
| 3 | neg1cn 12131 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 4 | ax-icn 11087 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 5 | 4 | mulm1i 11583 | . . . . . . . . 9 ⊢ (-1 · i) = -i |
| 6 | 3, 4, 5 | mulcomli 11143 | . . . . . . . 8 ⊢ (i · -1) = -i |
| 7 | 4 | mulridi 11138 | . . . . . . . 8 ⊢ (i · 1) = i |
| 8 | ifeq12 4497 | . . . . . . . 8 ⊢ (((i · -1) = -i ∧ (i · 1) = i) → if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i)) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i) |
| 10 | 2, 9 | eqtr2i 2753 | . . . . . 6 ⊢ if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1)) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1))) |
| 12 | 11 | oveq1d 7368 | . . . 4 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) |
| 13 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → i ∈ ℂ) |
| 14 | neg1rr 12132 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 15 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | 14, 15 | ifcli 4526 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ) |
| 18 | 17 | recnd 11162 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ) |
| 19 | sqrtcvallem3 43611 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | |
| 20 | 19 | recnd 11162 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ) |
| 21 | 13, 18, 20 | mulassd 11157 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 22 | 12, 21 | eqtrd 2764 | . . 3 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 23 | 22 | oveq2d 7369 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) |
| 24 | 1, 23 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11365 -cneg 11366 / cdiv 11795 2c2 12201 ℜcre 15022 ℑcim 15023 √csqrt 15158 abscabs 15159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |