| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqrtcval2 | Structured version Visualization version GIF version | ||
| Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43637. (Contributed by RP, 18-May-2024.) |
| Ref | Expression |
|---|---|
| sqrtcval2 | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrtcval 43637 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | |
| 2 | ovif2 7491 | . . . . . . 7 ⊢ (i · if((ℑ‘𝐴) < 0, -1, 1)) = if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) | |
| 3 | neg1cn 12178 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 4 | ax-icn 11134 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 5 | 4 | mulm1i 11630 | . . . . . . . . 9 ⊢ (-1 · i) = -i |
| 6 | 3, 4, 5 | mulcomli 11190 | . . . . . . . 8 ⊢ (i · -1) = -i |
| 7 | 4 | mulridi 11185 | . . . . . . . 8 ⊢ (i · 1) = i |
| 8 | ifeq12 4510 | . . . . . . . 8 ⊢ (((i · -1) = -i ∧ (i · 1) = i) → if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i)) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i) |
| 10 | 2, 9 | eqtr2i 2754 | . . . . . 6 ⊢ if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1)) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1))) |
| 12 | 11 | oveq1d 7405 | . . . 4 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) |
| 13 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → i ∈ ℂ) |
| 14 | neg1rr 12179 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 15 | 1re 11181 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 16 | 14, 15 | ifcli 4539 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ) |
| 18 | 17 | recnd 11209 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ) |
| 19 | sqrtcvallem3 43634 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | |
| 20 | 19 | recnd 11209 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ) |
| 21 | 13, 18, 20 | mulassd 11204 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 22 | 12, 21 | eqtrd 2765 | . . 3 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| 23 | 22 | oveq2d 7406 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) |
| 24 | 1, 23 | eqtr4d 2768 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 ℜcre 15070 ℑcim 15071 √csqrt 15206 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |