Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqrtcval2 | Structured version Visualization version GIF version |
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 41202. (Contributed by RP, 18-May-2024.) |
Ref | Expression |
---|---|
sqrtcval2 | ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrtcval 41202 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | |
2 | ovif2 7364 | . . . . . . 7 ⊢ (i · if((ℑ‘𝐴) < 0, -1, 1)) = if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) | |
3 | neg1cn 12070 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
4 | ax-icn 10914 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
5 | 4 | mulm1i 11403 | . . . . . . . . 9 ⊢ (-1 · i) = -i |
6 | 3, 4, 5 | mulcomli 10968 | . . . . . . . 8 ⊢ (i · -1) = -i |
7 | 4 | mulid1i 10963 | . . . . . . . 8 ⊢ (i · 1) = i |
8 | ifeq12 4482 | . . . . . . . 8 ⊢ (((i · -1) = -i ∧ (i · 1) = i) → if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i)) | |
9 | 6, 7, 8 | mp2an 688 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, (i · -1), (i · 1)) = if((ℑ‘𝐴) < 0, -i, i) |
10 | 2, 9 | eqtr2i 2768 | . . . . . 6 ⊢ if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1)) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -i, i) = (i · if((ℑ‘𝐴) < 0, -1, 1))) |
12 | 11 | oveq1d 7283 | . . . 4 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) |
13 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → i ∈ ℂ) |
14 | neg1rr 12071 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
15 | 1re 10959 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
16 | 14, 15 | ifcli 4511 | . . . . . . 7 ⊢ if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ) |
18 | 17 | recnd 10987 | . . . . 5 ⊢ (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ) |
19 | sqrtcvallem3 41199 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | |
20 | 19 | recnd 10987 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ) |
21 | 13, 18, 20 | mulassd 10982 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((i · if((ℑ‘𝐴) < 0, -1, 1)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
22 | 12, 21 | eqtrd 2779 | . . 3 ⊢ (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
23 | 22 | oveq2d 7284 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) |
24 | 1, 23 | eqtr4d 2782 | 1 ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ifcif 4464 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 ici 10857 + caddc 10858 · cmul 10860 < clt 10993 − cmin 11188 -cneg 11189 / cdiv 11615 2c2 12011 ℜcre 14789 ℑcim 14790 √csqrt 14925 abscabs 14926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |