| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4488 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-if 4485 |
| This theorem is referenced by: ifeq12d 4506 ifbieq1d 4509 ifeq1da 4516 rabsnif 4683 fsuppmptif 9326 cantnflem1 9618 sumeq2w 15634 cbvsum 15637 cbvsumv 15638 sumeq2sdv 15645 isumless 15787 prodeq2sdv 15865 prodss 15889 subgmulg 19048 evlslem2 21962 selvval 21998 dmatcrng 22365 scmatscmiddistr 22371 scmatcrng 22384 marrepfval 22423 mdetr0 22468 mdetunilem8 22482 madufval 22500 madugsum 22506 minmar1fval 22509 decpmatid 22633 monmatcollpw 22642 pmatcollpwscmatlem1 22652 cnmpopc 24798 pcoval2 24892 pcopt 24898 itgz 25658 iblss2 25683 itgss 25689 itgcn 25722 plyeq0lem 26091 dgrcolem2 26156 plydivlem4 26180 leibpi 26828 chtublem 27098 sumdchr 27159 bposlem6 27176 lgsval 27188 dchrvmasumiflem2 27389 padicabvcxp 27519 dfrdg3 35757 cbvsumdavw 36240 matunitlindflem1 37583 ftc1anclem2 37661 ftc1anclem5 37664 ftc1anclem7 37666 fsuppssindlem2 42553 fsuppssind 42554 mnringmulrvald 44189 hoidifhspval 46579 hoimbl 46602 |
| Copyright terms: Public domain | W3C validator |