Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4460 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-if 4457 |
This theorem is referenced by: ifeq12d 4477 ifbieq1d 4480 ifeq1da 4487 rabsnif 4656 fsuppmptif 9088 cantnflem1 9377 sumeq2w 15332 cbvsum 15335 isumless 15485 prodss 15585 subgmulg 18684 evlslem2 21199 selvval 21238 dmatcrng 21559 scmatscmiddistr 21565 scmatcrng 21578 marrepfval 21617 mdetr0 21662 mdetunilem8 21676 madufval 21694 madugsum 21700 minmar1fval 21703 decpmatid 21827 monmatcollpw 21836 pmatcollpwscmatlem1 21846 cnmpopc 23997 pcoval2 24085 pcopt 24091 itgz 24850 iblss2 24875 itgss 24881 itgcn 24914 plyeq0lem 25276 dgrcolem2 25340 plydivlem4 25361 leibpi 25997 chtublem 26264 sumdchr 26325 bposlem6 26342 lgsval 26354 dchrvmasumiflem2 26555 padicabvcxp 26685 dfrdg3 33678 matunitlindflem1 35700 ftc1anclem2 35778 ftc1anclem5 35781 ftc1anclem7 35783 fsuppssindlem2 40204 fsuppssind 40205 mnringmulrvald 41734 hoidifhspval 44036 hoimbl 44059 |
Copyright terms: Public domain | W3C validator |