| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4492 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifeq12d 4510 ifbieq1d 4513 ifeq1da 4520 rabsnif 4687 fsuppmptif 9350 cantnflem1 9642 sumeq2w 15658 cbvsum 15661 cbvsumv 15662 sumeq2sdv 15669 isumless 15811 prodeq2sdv 15889 prodss 15913 subgmulg 19072 evlslem2 21986 selvval 22022 dmatcrng 22389 scmatscmiddistr 22395 scmatcrng 22408 marrepfval 22447 mdetr0 22492 mdetunilem8 22506 madufval 22524 madugsum 22530 minmar1fval 22533 decpmatid 22657 monmatcollpw 22666 pmatcollpwscmatlem1 22676 cnmpopc 24822 pcoval2 24916 pcopt 24922 itgz 25682 iblss2 25707 itgss 25713 itgcn 25746 plyeq0lem 26115 dgrcolem2 26180 plydivlem4 26204 leibpi 26852 chtublem 27122 sumdchr 27183 bposlem6 27200 lgsval 27212 dchrvmasumiflem2 27413 padicabvcxp 27543 dfrdg3 35784 cbvsumdavw 36267 matunitlindflem1 37610 ftc1anclem2 37688 ftc1anclem5 37691 ftc1anclem7 37693 fsuppssindlem2 42580 fsuppssind 42581 mnringmulrvald 44216 hoidifhspval 46606 hoimbl 46629 |
| Copyright terms: Public domain | W3C validator |