![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4533 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-un 3954 df-if 4530 |
This theorem is referenced by: ifeq12d 4550 ifbieq1d 4553 ifeq1da 4560 rabsnif 4728 fsuppmptif 9398 cantnflem1 9688 sumeq2w 15644 cbvsum 15647 isumless 15797 prodss 15897 subgmulg 19058 evlslem2 21863 selvval 21902 dmatcrng 22226 scmatscmiddistr 22232 scmatcrng 22245 marrepfval 22284 mdetr0 22329 mdetunilem8 22343 madufval 22361 madugsum 22367 minmar1fval 22370 decpmatid 22494 monmatcollpw 22503 pmatcollpwscmatlem1 22513 cnmpopc 24671 pcoval2 24765 pcopt 24771 itgz 25532 iblss2 25557 itgss 25563 itgcn 25596 plyeq0lem 25958 dgrcolem2 26022 plydivlem4 26043 leibpi 26681 chtublem 26948 sumdchr 27009 bposlem6 27026 lgsval 27038 dchrvmasumiflem2 27239 padicabvcxp 27369 dfrdg3 35070 matunitlindflem1 36789 ftc1anclem2 36867 ftc1anclem5 36870 ftc1anclem7 36872 fsuppssindlem2 41468 fsuppssind 41469 mnringmulrvald 43290 hoidifhspval 45624 hoimbl 45647 |
Copyright terms: Public domain | W3C validator |