| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4495 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-if 4492 |
| This theorem is referenced by: ifeq12d 4513 ifbieq1d 4516 ifeq1da 4523 rabsnif 4690 fsuppmptif 9357 cantnflem1 9649 sumeq2w 15665 cbvsum 15668 cbvsumv 15669 sumeq2sdv 15676 isumless 15818 prodeq2sdv 15896 prodss 15920 subgmulg 19079 evlslem2 21993 selvval 22029 dmatcrng 22396 scmatscmiddistr 22402 scmatcrng 22415 marrepfval 22454 mdetr0 22499 mdetunilem8 22513 madufval 22531 madugsum 22537 minmar1fval 22540 decpmatid 22664 monmatcollpw 22673 pmatcollpwscmatlem1 22683 cnmpopc 24829 pcoval2 24923 pcopt 24929 itgz 25689 iblss2 25714 itgss 25720 itgcn 25753 plyeq0lem 26122 dgrcolem2 26187 plydivlem4 26211 leibpi 26859 chtublem 27129 sumdchr 27190 bposlem6 27207 lgsval 27219 dchrvmasumiflem2 27420 padicabvcxp 27550 dfrdg3 35791 cbvsumdavw 36274 matunitlindflem1 37617 ftc1anclem2 37695 ftc1anclem5 37698 ftc1anclem7 37700 fsuppssindlem2 42587 fsuppssind 42588 mnringmulrvald 44223 hoidifhspval 46613 hoimbl 46636 |
| Copyright terms: Public domain | W3C validator |