![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4552 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-if 4549 |
This theorem is referenced by: ifeq12d 4569 ifbieq1d 4572 ifeq1da 4579 rabsnif 4748 fsuppmptif 9468 cantnflem1 9758 sumeq2w 15740 cbvsum 15743 cbvsumv 15744 sumeq2sdv 15751 isumless 15893 prodeq2sdv 15971 prodss 15995 subgmulg 19180 evlslem2 22126 selvval 22162 dmatcrng 22529 scmatscmiddistr 22535 scmatcrng 22548 marrepfval 22587 mdetr0 22632 mdetunilem8 22646 madufval 22664 madugsum 22670 minmar1fval 22673 decpmatid 22797 monmatcollpw 22806 pmatcollpwscmatlem1 22816 cnmpopc 24974 pcoval2 25068 pcopt 25074 itgz 25836 iblss2 25861 itgss 25867 itgcn 25900 plyeq0lem 26269 dgrcolem2 26334 plydivlem4 26356 leibpi 27003 chtublem 27273 sumdchr 27334 bposlem6 27351 lgsval 27363 dchrvmasumiflem2 27564 padicabvcxp 27694 dfrdg3 35760 cbvsumdavw 36245 matunitlindflem1 37576 ftc1anclem2 37654 ftc1anclem5 37657 ftc1anclem7 37659 fsuppssindlem2 42547 fsuppssind 42548 mnringmulrvald 44196 hoidifhspval 46529 hoimbl 46552 |
Copyright terms: Public domain | W3C validator |