| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4482 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-un 3910 df-if 4479 |
| This theorem is referenced by: ifeq12d 4500 ifbieq1d 4503 ifeq1da 4510 rabsnif 4677 fsuppmptif 9308 cantnflem1 9604 sumeq2w 15617 cbvsum 15620 cbvsumv 15621 sumeq2sdv 15628 isumless 15770 prodeq2sdv 15848 prodss 15872 subgmulg 19037 evlslem2 22002 selvval 22038 dmatcrng 22405 scmatscmiddistr 22411 scmatcrng 22424 marrepfval 22463 mdetr0 22508 mdetunilem8 22522 madufval 22540 madugsum 22546 minmar1fval 22549 decpmatid 22673 monmatcollpw 22682 pmatcollpwscmatlem1 22692 cnmpopc 24838 pcoval2 24932 pcopt 24938 itgz 25698 iblss2 25723 itgss 25729 itgcn 25762 plyeq0lem 26131 dgrcolem2 26196 plydivlem4 26220 leibpi 26868 chtublem 27138 sumdchr 27199 bposlem6 27216 lgsval 27228 dchrvmasumiflem2 27429 padicabvcxp 27559 dfrdg3 35772 cbvsumdavw 36255 matunitlindflem1 37598 ftc1anclem2 37676 ftc1anclem5 37679 ftc1anclem7 37681 fsuppssindlem2 42568 fsuppssind 42569 mnringmulrvald 44203 hoidifhspval 46593 hoimbl 46616 |
| Copyright terms: Public domain | W3C validator |