![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4533 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-un 3954 df-if 4530 |
This theorem is referenced by: ifeq12d 4550 ifbieq1d 4553 ifeq1da 4560 rabsnif 4728 fsuppmptif 9394 cantnflem1 9684 sumeq2w 15638 cbvsum 15641 isumless 15791 prodss 15891 subgmulg 19020 evlslem2 21642 selvval 21681 dmatcrng 22004 scmatscmiddistr 22010 scmatcrng 22023 marrepfval 22062 mdetr0 22107 mdetunilem8 22121 madufval 22139 madugsum 22145 minmar1fval 22148 decpmatid 22272 monmatcollpw 22281 pmatcollpwscmatlem1 22291 cnmpopc 24444 pcoval2 24532 pcopt 24538 itgz 25298 iblss2 25323 itgss 25329 itgcn 25362 plyeq0lem 25724 dgrcolem2 25788 plydivlem4 25809 leibpi 26447 chtublem 26714 sumdchr 26775 bposlem6 26792 lgsval 26804 dchrvmasumiflem2 27005 padicabvcxp 27135 dfrdg3 34768 matunitlindflem1 36484 ftc1anclem2 36562 ftc1anclem5 36565 ftc1anclem7 36567 fsuppssindlem2 41164 fsuppssind 41165 mnringmulrvald 42986 hoidifhspval 45324 hoimbl 45347 |
Copyright terms: Public domain | W3C validator |