Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4463 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ifeq12d 4480 ifbieq1d 4483 ifeq1da 4490 rabsnif 4659 fsuppmptif 9158 cantnflem1 9447 sumeq2w 15404 cbvsum 15407 isumless 15557 prodss 15657 subgmulg 18769 evlslem2 21289 selvval 21328 dmatcrng 21651 scmatscmiddistr 21657 scmatcrng 21670 marrepfval 21709 mdetr0 21754 mdetunilem8 21768 madufval 21786 madugsum 21792 minmar1fval 21795 decpmatid 21919 monmatcollpw 21928 pmatcollpwscmatlem1 21938 cnmpopc 24091 pcoval2 24179 pcopt 24185 itgz 24945 iblss2 24970 itgss 24976 itgcn 25009 plyeq0lem 25371 dgrcolem2 25435 plydivlem4 25456 leibpi 26092 chtublem 26359 sumdchr 26420 bposlem6 26437 lgsval 26449 dchrvmasumiflem2 26650 padicabvcxp 26780 dfrdg3 33772 matunitlindflem1 35773 ftc1anclem2 35851 ftc1anclem5 35854 ftc1anclem7 35856 fsuppssindlem2 40281 fsuppssind 40282 mnringmulrvald 41845 hoidifhspval 44146 hoimbl 44169 |
Copyright terms: Public domain | W3C validator |