![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4535 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-if 4532 |
This theorem is referenced by: ifeq12d 4552 ifbieq1d 4555 ifeq1da 4562 rabsnif 4728 fsuppmptif 9437 cantnflem1 9727 sumeq2w 15725 cbvsum 15728 cbvsumv 15729 sumeq2sdv 15736 isumless 15878 prodeq2sdv 15956 prodss 15980 subgmulg 19171 evlslem2 22121 selvval 22157 dmatcrng 22524 scmatscmiddistr 22530 scmatcrng 22543 marrepfval 22582 mdetr0 22627 mdetunilem8 22641 madufval 22659 madugsum 22665 minmar1fval 22668 decpmatid 22792 monmatcollpw 22801 pmatcollpwscmatlem1 22811 cnmpopc 24969 pcoval2 25063 pcopt 25069 itgz 25831 iblss2 25856 itgss 25862 itgcn 25895 plyeq0lem 26264 dgrcolem2 26329 plydivlem4 26353 leibpi 27000 chtublem 27270 sumdchr 27331 bposlem6 27348 lgsval 27360 dchrvmasumiflem2 27561 padicabvcxp 27691 dfrdg3 35778 cbvsumdavw 36262 matunitlindflem1 37603 ftc1anclem2 37681 ftc1anclem5 37684 ftc1anclem7 37686 fsuppssindlem2 42579 fsuppssind 42580 mnringmulrvald 44223 hoidifhspval 46564 hoimbl 46587 |
Copyright terms: Public domain | W3C validator |