| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4474 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-if 4471 |
| This theorem is referenced by: ifeq12d 4492 ifbieq1d 4495 ifeq1da 4502 rabsnif 4671 fsuppmptif 9278 cantnflem1 9574 sumeq2w 15594 cbvsum 15597 cbvsumv 15598 sumeq2sdv 15605 isumless 15747 prodeq2sdv 15825 prodss 15849 subgmulg 19048 evlslem2 22009 selvval 22045 dmatcrng 22412 scmatscmiddistr 22418 scmatcrng 22431 marrepfval 22470 mdetr0 22515 mdetunilem8 22529 madufval 22547 madugsum 22553 minmar1fval 22556 decpmatid 22680 monmatcollpw 22689 pmatcollpwscmatlem1 22699 cnmpopc 24844 pcoval2 24938 pcopt 24944 itgz 25704 iblss2 25729 itgss 25735 itgcn 25768 plyeq0lem 26137 dgrcolem2 26202 plydivlem4 26226 leibpi 26874 chtublem 27144 sumdchr 27205 bposlem6 27222 lgsval 27234 dchrvmasumiflem2 27435 padicabvcxp 27565 dfrdg3 35830 cbvsumdavw 36313 matunitlindflem1 37656 ftc1anclem2 37734 ftc1anclem5 37737 ftc1anclem7 37739 fsuppssindlem2 42625 fsuppssind 42626 mnringmulrvald 44260 hoidifhspval 46646 hoimbl 46669 |
| Copyright terms: Public domain | W3C validator |