| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4504 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 df-if 4501 |
| This theorem is referenced by: ifeq12d 4522 ifbieq1d 4525 ifeq1da 4532 rabsnif 4699 fsuppmptif 9411 cantnflem1 9703 sumeq2w 15708 cbvsum 15711 cbvsumv 15712 sumeq2sdv 15719 isumless 15861 prodeq2sdv 15939 prodss 15963 subgmulg 19123 evlslem2 22037 selvval 22073 dmatcrng 22440 scmatscmiddistr 22446 scmatcrng 22459 marrepfval 22498 mdetr0 22543 mdetunilem8 22557 madufval 22575 madugsum 22581 minmar1fval 22584 decpmatid 22708 monmatcollpw 22717 pmatcollpwscmatlem1 22727 cnmpopc 24873 pcoval2 24967 pcopt 24973 itgz 25734 iblss2 25759 itgss 25765 itgcn 25798 plyeq0lem 26167 dgrcolem2 26232 plydivlem4 26256 leibpi 26904 chtublem 27174 sumdchr 27235 bposlem6 27252 lgsval 27264 dchrvmasumiflem2 27465 padicabvcxp 27595 dfrdg3 35814 cbvsumdavw 36297 matunitlindflem1 37640 ftc1anclem2 37718 ftc1anclem5 37721 ftc1anclem7 37723 fsuppssindlem2 42615 fsuppssind 42616 mnringmulrvald 44251 hoidifhspval 46637 hoimbl 46660 |
| Copyright terms: Public domain | W3C validator |