| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq1 4480 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 df-if 4477 |
| This theorem is referenced by: ifeq12d 4498 ifbieq1d 4501 ifeq1da 4508 rabsnif 4677 fsuppmptif 9294 cantnflem1 9590 sumeq2w 15606 cbvsum 15609 cbvsumv 15610 sumeq2sdv 15617 isumless 15759 prodeq2sdv 15837 prodss 15861 subgmulg 19061 evlslem2 22025 selvval 22069 dmatcrng 22437 scmatscmiddistr 22443 scmatcrng 22456 marrepfval 22495 mdetr0 22540 mdetunilem8 22554 madufval 22572 madugsum 22578 minmar1fval 22581 decpmatid 22705 monmatcollpw 22714 pmatcollpwscmatlem1 22724 cnmpopc 24869 pcoval2 24963 pcopt 24969 itgz 25729 iblss2 25754 itgss 25760 itgcn 25793 plyeq0lem 26162 dgrcolem2 26227 plydivlem4 26251 leibpi 26899 chtublem 27169 sumdchr 27230 bposlem6 27247 lgsval 27259 dchrvmasumiflem2 27460 padicabvcxp 27590 extvfv 33626 dfrdg3 35910 cbvsumdavw 36395 matunitlindflem1 37729 ftc1anclem2 37807 ftc1anclem5 37810 ftc1anclem7 37812 fsuppssindlem2 42750 fsuppssind 42751 mnringmulrvald 44384 hoidifhspval 46768 hoimbl 46791 |
| Copyright terms: Public domain | W3C validator |