Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1d | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq1 4427 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ifcif 4423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3865 df-if 4424 |
This theorem is referenced by: ifeq12d 4444 ifbieq1d 4447 ifeq1da 4454 rabsnif 4619 fsuppmptif 8909 cantnflem1 9198 sumeq2w 15110 cbvsum 15113 isumless 15261 prodss 15362 subgmulg 18374 evlslem2 20856 selvval 20895 dmatcrng 21216 scmatscmiddistr 21222 scmatcrng 21235 marrepfval 21274 mdetr0 21319 mdetunilem8 21333 madufval 21351 madugsum 21357 minmar1fval 21360 decpmatid 21484 monmatcollpw 21493 pmatcollpwscmatlem1 21503 cnmpopc 23643 pcoval2 23731 pcopt 23737 itgz 24494 iblss2 24519 itgss 24525 itgcn 24558 plyeq0lem 24920 dgrcolem2 24984 plydivlem4 25005 leibpi 25641 chtublem 25908 sumdchr 25969 bposlem6 25986 lgsval 25998 dchrvmasumiflem2 26199 padicabvcxp 26329 dfrdg3 33301 matunitlindflem1 35368 ftc1anclem2 35446 ftc1anclem5 35449 ftc1anclem7 35451 fsuppssindlem2 39825 fsuppssind 39826 mnringmulrvald 41353 hoidifhspval 43658 hoimbl 43681 |
Copyright terms: Public domain | W3C validator |