Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval Structured version   Visualization version   GIF version

Theorem sqrtcval 40699
Description: Explicit formula for the complex square root in terms of the square root of non-negative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 14584 and crimi 14585. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))

Proof of Theorem sqrtcval
StepHypRef Expression
1 sqrtcvallem5 40698 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ)
21recnd 10692 . . . 4 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ)
3 ax-icn 10619 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
5 neg1rr 11774 . . . . . . . . 9 -1 ∈ ℝ
6 1re 10664 . . . . . . . . 9 1 ∈ ℝ
75, 6ifcli 4460 . . . . . . . 8 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
87a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
9 sqrtcvallem3 40696 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
108, 9remulcld 10694 . . . . . 6 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℝ)
1110recnd 10692 . . . . 5 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℂ)
124, 11mulcld 10684 . . . 4 (𝐴 ∈ ℂ → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ)
132, 12addcld 10683 . . 3 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
14 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
15 binom2 13614 . . . . 5 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ ∧ (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ) → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
162, 12, 15syl2anc 588 . . . 4 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
17 abscl 14671 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
18 recl 14502 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1917, 18readdcld 10693 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
2019rehalfcld 11906 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℝ)
2120recnd 10692 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ)
2221sqsqrtd 14832 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
234, 11sqmuld 13557 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)))
24 i2 13600 . . . . . . . . . . 11 (i↑2) = -1
2524a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i↑2) = -1)
268recnd 10692 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
279recnd 10692 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2826, 27sqmuld 13557 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)))
29 ovif 7238 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = if((ℑ‘𝐴) < 0, (-1↑2), (1↑2))
30 neg1sqe1 13594 . . . . . . . . . . . . . . 15 (-1↑2) = 1
31 sq1 13593 . . . . . . . . . . . . . . 15 (1↑2) = 1
32 ifeq12 4431 . . . . . . . . . . . . . . 15 (((-1↑2) = 1 ∧ (1↑2) = 1) → if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1))
3330, 31, 32mp2an 692 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1)
34 ifid 4453 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, 1, 1) = 1
3529, 33, 343eqtri 2786 . . . . . . . . . . . . 13 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1
3635a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1)
3717, 18resubcld 11091 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ)
3837rehalfcld 11906 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℝ)
3938recnd 10692 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℂ)
4039sqsqrtd 14832 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4136, 40oveq12d 7161 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)) = (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4239mulid2d 10682 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4328, 41, 423eqtrd 2798 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4425, 43oveq12d 7161 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)) = (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4539mulm1d 11115 . . . . . . . . 9 (𝐴 ∈ ℂ → (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4623, 44, 453eqtrd 2798 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4722, 46oveq12d 7161 . . . . . . 7 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4821, 39negsubd 11026 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4917recnd 10692 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5018recnd 10692 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5149, 50, 50pnncand 11059 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
52502timesd 11902 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
5351, 52eqtr4d 2797 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = (2 · (ℜ‘𝐴)))
5453oveq1d 7158 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((2 · (ℜ‘𝐴)) / 2))
5519recnd 10692 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ)
5637recnd 10692 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℂ)
57 2cnd 11737 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ∈ ℂ)
58 2ne0 11763 . . . . . . . . . 10 2 ≠ 0
5958a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ≠ 0)
6055, 56, 57, 59divsubdird 11478 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
6150, 57, 59divcan3d 11444 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (ℜ‘𝐴)) / 2) = (ℜ‘𝐴))
6254, 60, 613eqtr3d 2802 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (ℜ‘𝐴))
6347, 48, 623eqtrd 2798 . . . . . 6 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = (ℜ‘𝐴))
6457, 2mulcld 10684 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) ∈ ℂ)
6564, 4, 11mul12d 10872 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
6657, 2, 12mulassd 10687 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
6757, 2, 11mulassd 10687 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
682, 26, 27mul12d 10872 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
69 sqrtcvallem4 40697 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
70 halfnneg2 11890 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7119, 70syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7269, 71mpbird 260 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)))
73 2rp 12420 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℝ+)
7519, 72, 74sqrtdivd 14816 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)))
76 sqrtcvallem2 40695 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
77 halfnneg2 11890 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7837, 77syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7976, 78mpbird 260 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)))
8037, 79, 74sqrtdivd 14816 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2)))
8175, 80oveq12d 7161 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))))
8219, 72resqrtcld 14810 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℝ)
8382recnd 10692 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℂ)
84 2re 11733 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 2 ∈ ℝ)
86 0le2 11761 . . . . . . . . . . . . . . . . 17 0 ≤ 2
8786a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ 2)
8885, 87resqrtcld 14810 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘2) ∈ ℝ)
8988recnd 10692 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ∈ ℂ)
9037, 79resqrtcld 14810 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℝ)
9190recnd 10692 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℂ)
92 sqrt00 14656 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
9384, 86, 92mp2an 692 . . . . . . . . . . . . . . . . 17 ((√‘2) = 0 ↔ 2 = 0)
9493necon3bii 3001 . . . . . . . . . . . . . . . 16 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
9558, 94mpbir 234 . . . . . . . . . . . . . . 15 (√‘2) ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ≠ 0)
9783, 89, 91, 89, 96, 96divmuldivd 11480 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))))
9818resqcld 13646 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
9998recnd 10692 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
100 imcl 14503 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
101100resqcld 13646 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
102101recnd 10692 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
103 absvalsq2 14674 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
10499, 102, 103mvrladdd 11076 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = ((ℑ‘𝐴)↑2))
105 subsq 13607 . . . . . . . . . . . . . . . . . 18 (((abs‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
10649, 50, 105syl2anc 588 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
107104, 106eqtr3d 2796 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
108107fveq2d 6655 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))))
109100absred 14809 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (√‘((ℑ‘𝐴)↑2)))
110 reabsifneg 40690 . . . . . . . . . . . . . . . . 17 ((ℑ‘𝐴) ∈ ℝ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
112109, 111eqtr3d 2796 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
11319, 72, 37, 79sqrtmuld 14817 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))))
114108, 112, 1133eqtr3rd 2803 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
115 remsqsqrt 14649 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
11684, 86, 115mp2an 692 . . . . . . . . . . . . . . 15 ((√‘2) · (√‘2)) = 2
117116a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘2) · (√‘2)) = 2)
118114, 117oveq12d 7161 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
11981, 97, 1183eqtrd 2798 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
120119oveq2d 7159 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
12168, 120eqtrd 2794 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
122121oveq2d 7159 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))))
123100renegcld 11090 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
124123, 100ifcld 4459 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℝ)
125124recnd 10692 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℂ)
12626, 125, 57, 59divassd 11474 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
127 ovif12 7240 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴)))
1285a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -1 ∈ ℝ)
129128recnd 10692 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → -1 ∈ ℂ)
130100recnd 10692 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
131129, 129, 130mulassd 10687 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (-1 · (-1 · (ℑ‘𝐴))))
132 neg1mulneg1e1 11872 . . . . . . . . . . . . . . . . . . . 20 (-1 · -1) = 1
133132a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-1 · -1) = 1)
134133oveq1d 7158 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (1 · (ℑ‘𝐴)))
135130mulid2d 10682 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
136134, 135eqtrd 2794 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (ℑ‘𝐴))
137130mulm1d 11115 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
138137oveq2d 7159 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · (-1 · (ℑ‘𝐴))) = (-1 · -(ℑ‘𝐴)))
139131, 136, 1383eqtr3rd 2803 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
140139adantr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
141135adantr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ ¬ (ℑ‘𝐴) < 0) → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
142140, 141ifeqda 4449 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴))) = (ℑ‘𝐴))
143127, 142syl5eq 2806 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = (ℑ‘𝐴))
144143oveq1d 7158 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = ((ℑ‘𝐴) / 2))
145126, 144eqtr3d 2796 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)) = ((ℑ‘𝐴) / 2))
146145oveq2d 7159 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (2 · ((ℑ‘𝐴) / 2)))
147130, 57, 59divcan2d 11441 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · ((ℑ‘𝐴) / 2)) = (ℑ‘𝐴))
148146, 147eqtrd 2794 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (ℑ‘𝐴))
14967, 122, 1483eqtrd 2798 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (ℑ‘𝐴))
150149oveq2d 7159 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (ℑ‘𝐴)))
15165, 66, 1503eqtr3d 2802 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (ℑ‘𝐴)))
15263, 151oveq12d 7161 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1531resqcld 13646 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℝ)
154153recnd 10692 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℂ)
1552, 12mulcld 10684 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
15657, 155mulcld 10684 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
15712sqcld 13543 . . . . . 6 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) ∈ ℂ)
158154, 156, 157add32d 10890 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
159 replim 14508 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
160152, 158, 1593eqtr4d 2804 . . . 4 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = 𝐴)
16116, 160eqtrd 2794 . . 3 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = 𝐴)
16220, 69sqrtge0d 14813 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
1631, 10crred 14623 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
164162, 163breqtrrd 5053 . . 3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
165 reim 14501 . . . . . . . . . 10 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
16613, 165syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
167166, 163eqtr3d 2796 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
168167eqeq1d 2761 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0))
169 cnsqrt00 14785 . . . . . . . 8 ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
17021, 169syl 17 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
171 half0 11886 . . . . . . . . 9 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17255, 171syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17349, 50addcomd 10865 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) = ((ℜ‘𝐴) + (abs‘𝐴)))
174173eqeq1d 2761 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) = 0 ↔ ((ℜ‘𝐴) + (abs‘𝐴)) = 0))
175 addeq0 11086 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
17650, 49, 175syl2anc 588 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
177172, 174, 1763bitrd 309 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
178168, 170, 1773bitrd 309 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
179 olc 866 . . . . . . . 8 ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)))
180 eqcom 2766 . . . . . . . . . 10 (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2))
181180a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2)))
182 sqeqor 13613 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
18350, 49, 182syl2anc 588 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
184103eqeq1d 2761 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2)))
185 addid0 11082 . . . . . . . . . . 11 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
18699, 102, 185syl2anc 588 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
187 sqeq0 13521 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
188130, 187syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
189184, 186, 1883bitrd 309 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (ℑ‘𝐴) = 0))
190181, 183, 1893bitr3d 313 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)) ↔ (ℑ‘𝐴) = 0))
191179, 190syl5ib 247 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → (ℑ‘𝐴) = 0))
192191ancld 555 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
193178, 192sylbid 243 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
194 simp2 1135 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) = -(abs‘𝐴))
195194oveq2d 7159 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = ((abs‘𝐴) + -(abs‘𝐴)))
196 simp1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℂ)
197196, 49syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (abs‘𝐴) ∈ ℂ)
198197negidd 11010 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + -(abs‘𝐴)) = 0)
199195, 198eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = 0)
200199oveq1d 7158 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = (0 / 2))
201 2cn 11734 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
202201, 58div0i 11397 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
203200, 202eqtrdi 2810 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0)
204203fveq2d 6655 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = (√‘0))
205 sqrt0 14634 . . . . . . . . . . . . . 14 (√‘0) = 0
206204, 205eqtrdi 2810 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0)
207 simp3 1136 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0)
208 0red 10667 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 0 ∈ ℝ)
209208ltnrd 10797 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ 0 < 0)
210207, 209eqnbrtrd 5043 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ (ℑ‘𝐴) < 0)
211210iffalsed 4424 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → if((ℑ‘𝐴) < 0, -1, 1) = 1)
212194oveq2d 7159 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = ((abs‘𝐴) − -(abs‘𝐴)))
21349, 49subnegd 11027 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
214492timesd 11902 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
215213, 214eqtr4d 2797 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
216196, 215syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
217212, 216eqtrd 2794 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = (2 · (abs‘𝐴)))
218217oveq1d 7158 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = ((2 · (abs‘𝐴)) / 2))
21949, 57, 59divcan3d 11444 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
220196, 219syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
221218, 220eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = (abs‘𝐴))
222221fveq2d 6655 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (√‘(abs‘𝐴)))
223211, 222oveq12d 7161 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (1 · (√‘(abs‘𝐴))))
224 absge0 14680 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
22517, 224resqrtcld 14810 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
226225recnd 10692 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
227226mulid2d 10682 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
228196, 227syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
229223, 228eqtrd 2794 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (√‘(abs‘𝐴)))
230229oveq2d 7159 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (i · (√‘(abs‘𝐴))))
231206, 230oveq12d 7161 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (0 + (i · (√‘(abs‘𝐴)))))
2324, 226mulcld 10684 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · (√‘(abs‘𝐴))) ∈ ℂ)
233196, 232syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (√‘(abs‘𝐴))) ∈ ℂ)
234233addid2d 10864 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (0 + (i · (√‘(abs‘𝐴)))) = (i · (√‘(abs‘𝐴))))
235231, 234eqtrd 2794 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (√‘(abs‘𝐴))))
236235oveq2d 7159 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (i · (√‘(abs‘𝐴)))))
237 ixi 11292 . . . . . . . . . . . . . 14 (i · i) = -1
238237a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (i · i) = -1)
239238oveq1d 7158 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (-1 · (√‘(abs‘𝐴))))
2404, 4, 226mulassd 10687 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (i · (i · (√‘(abs‘𝐴)))))
241226mulm1d 11115 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-1 · (√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
242239, 240, 2413eqtr3d 2802 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
243196, 242syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
244236, 243eqtrd 2794 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = -(√‘(abs‘𝐴)))
245244fveq2d 6655 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (ℜ‘-(√‘(abs‘𝐴))))
246225renegcld 11090 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ∈ ℝ)
247246rered 14616 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
248196, 247syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
249245, 248eqtrd 2794 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = -(√‘(abs‘𝐴)))
25017, 224sqrtge0d 14813 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
251225le0neg2d 11235 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 ≤ (√‘(abs‘𝐴)) ↔ -(√‘(abs‘𝐴)) ≤ 0))
252250, 251mpbid 235 . . . . . . . 8 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ≤ 0)
253196, 252syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → -(√‘(abs‘𝐴)) ≤ 0)
254249, 253eqbrtrd 5047 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0)
2552543expib 1120 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
256193, 255syld 47 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
2574, 13mulcld 10684 . . . . 5 (𝐴 ∈ ℂ → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
258257sqrtcvallem1 40689 . . . 4 (𝐴 ∈ ℂ → (((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0) ↔ ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+))
259256, 258mpbid 235 . . 3 (𝐴 ∈ ℂ → ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+)
26013, 14, 161, 164, 259eqsqrtd 14760 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (√‘𝐴))
261260eqcomd 2765 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wne 2949  ifcif 4413   class class class wbr 5025  cfv 6328  (class class class)co 7143  cc 10558  cr 10559  0cc0 10560  1c1 10561  ici 10562   + caddc 10563   · cmul 10565   < clt 10698  cle 10699  cmin 10893  -cneg 10894   / cdiv 11320  2c2 11714  +crp 12415  cexp 13464  cre 14489  cim 14490  csqrt 14625  abscabs 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-sup 8924  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-seq 13404  df-exp 13465  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628
This theorem is referenced by:  sqrtcval2  40700  resqrtval  40701  imsqrtval  40702
  Copyright terms: Public domain W3C validator