Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval Structured version   Visualization version   GIF version

Theorem sqrtcval 43659
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15232 and crimi 15233. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))

Proof of Theorem sqrtcval
StepHypRef Expression
1 sqrtcvallem5 43658 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ)
21recnd 11290 . . . 4 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ)
3 ax-icn 11215 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
5 neg1rr 12382 . . . . . . . . 9 -1 ∈ ℝ
6 1re 11262 . . . . . . . . 9 1 ∈ ℝ
75, 6ifcli 4572 . . . . . . . 8 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
87a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
9 sqrtcvallem3 43656 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
108, 9remulcld 11292 . . . . . 6 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℝ)
1110recnd 11290 . . . . 5 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℂ)
124, 11mulcld 11282 . . . 4 (𝐴 ∈ ℂ → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ)
132, 12addcld 11281 . . 3 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
14 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
15 binom2 14257 . . . . 5 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ ∧ (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ) → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
162, 12, 15syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
17 abscl 15318 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
18 recl 15150 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1917, 18readdcld 11291 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
2019rehalfcld 12515 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℝ)
2120recnd 11290 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ)
2221sqsqrtd 15479 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
234, 11sqmuld 14199 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)))
24 i2 14242 . . . . . . . . . . 11 (i↑2) = -1
2524a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i↑2) = -1)
268recnd 11290 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
279recnd 11290 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2826, 27sqmuld 14199 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)))
29 ovif 7532 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = if((ℑ‘𝐴) < 0, (-1↑2), (1↑2))
30 neg1sqe1 14236 . . . . . . . . . . . . . . 15 (-1↑2) = 1
31 sq1 14235 . . . . . . . . . . . . . . 15 (1↑2) = 1
32 ifeq12 4543 . . . . . . . . . . . . . . 15 (((-1↑2) = 1 ∧ (1↑2) = 1) → if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1))
3330, 31, 32mp2an 692 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1)
34 ifid 4565 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, 1, 1) = 1
3529, 33, 343eqtri 2768 . . . . . . . . . . . . 13 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1
3635a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1)
3717, 18resubcld 11692 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ)
3837rehalfcld 12515 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℝ)
3938recnd 11290 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℂ)
4039sqsqrtd 15479 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4136, 40oveq12d 7450 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)) = (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4239mullidd 11280 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4328, 41, 423eqtrd 2780 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4425, 43oveq12d 7450 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)) = (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4539mulm1d 11716 . . . . . . . . 9 (𝐴 ∈ ℂ → (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4623, 44, 453eqtrd 2780 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4722, 46oveq12d 7450 . . . . . . 7 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4821, 39negsubd 11627 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4917recnd 11290 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5018recnd 11290 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5149, 50, 50pnncand 11660 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
52502timesd 12511 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
5351, 52eqtr4d 2779 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = (2 · (ℜ‘𝐴)))
5453oveq1d 7447 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((2 · (ℜ‘𝐴)) / 2))
5519recnd 11290 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ)
5637recnd 11290 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℂ)
57 2cnd 12345 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ∈ ℂ)
58 2ne0 12371 . . . . . . . . . 10 2 ≠ 0
5958a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ≠ 0)
6055, 56, 57, 59divsubdird 12083 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
6150, 57, 59divcan3d 12049 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (ℜ‘𝐴)) / 2) = (ℜ‘𝐴))
6254, 60, 613eqtr3d 2784 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (ℜ‘𝐴))
6347, 48, 623eqtrd 2780 . . . . . 6 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = (ℜ‘𝐴))
6457, 2mulcld 11282 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) ∈ ℂ)
6564, 4, 11mul12d 11471 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
6657, 2, 12mulassd 11285 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
6757, 2, 11mulassd 11285 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
682, 26, 27mul12d 11471 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
69 sqrtcvallem4 43657 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
70 halfnneg2 12499 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7119, 70syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7269, 71mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)))
73 2rp 13040 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℝ+)
7519, 72, 74sqrtdivd 15463 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)))
76 sqrtcvallem2 43655 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
77 halfnneg2 12499 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7837, 77syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7976, 78mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)))
8037, 79, 74sqrtdivd 15463 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2)))
8175, 80oveq12d 7450 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))))
8219, 72resqrtcld 15457 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℝ)
8382recnd 11290 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℂ)
84 2re 12341 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 2 ∈ ℝ)
86 0le2 12369 . . . . . . . . . . . . . . . . 17 0 ≤ 2
8786a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ 2)
8885, 87resqrtcld 15457 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘2) ∈ ℝ)
8988recnd 11290 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ∈ ℂ)
9037, 79resqrtcld 15457 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℝ)
9190recnd 11290 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℂ)
92 sqrt00 15303 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
9384, 86, 92mp2an 692 . . . . . . . . . . . . . . . . 17 ((√‘2) = 0 ↔ 2 = 0)
9493necon3bii 2992 . . . . . . . . . . . . . . . 16 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
9558, 94mpbir 231 . . . . . . . . . . . . . . 15 (√‘2) ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ≠ 0)
9783, 89, 91, 89, 96, 96divmuldivd 12085 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))))
9818resqcld 14166 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
9998recnd 11290 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
100 imcl 15151 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
101100resqcld 14166 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
102101recnd 11290 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
103 absvalsq2 15321 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
10499, 102, 103mvrladdd 11677 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = ((ℑ‘𝐴)↑2))
105 subsq 14250 . . . . . . . . . . . . . . . . . 18 (((abs‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
10649, 50, 105syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
107104, 106eqtr3d 2778 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
108107fveq2d 6909 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))))
109100absred 15456 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (√‘((ℑ‘𝐴)↑2)))
110 reabsifneg 43650 . . . . . . . . . . . . . . . . 17 ((ℑ‘𝐴) ∈ ℝ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
112109, 111eqtr3d 2778 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
11319, 72, 37, 79sqrtmuld 15464 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))))
114108, 112, 1133eqtr3rd 2785 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
115 remsqsqrt 15296 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
11684, 86, 115mp2an 692 . . . . . . . . . . . . . . 15 ((√‘2) · (√‘2)) = 2
117116a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘2) · (√‘2)) = 2)
118114, 117oveq12d 7450 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
11981, 97, 1183eqtrd 2780 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
120119oveq2d 7448 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
12168, 120eqtrd 2776 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
122121oveq2d 7448 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))))
123100renegcld 11691 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
124123, 100ifcld 4571 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℝ)
125124recnd 11290 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℂ)
12626, 125, 57, 59divassd 12079 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
127 ovif12 7534 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴)))
1285a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -1 ∈ ℝ)
129128recnd 11290 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → -1 ∈ ℂ)
130100recnd 11290 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
131129, 129, 130mulassd 11285 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (-1 · (-1 · (ℑ‘𝐴))))
132 neg1mulneg1e1 12480 . . . . . . . . . . . . . . . . . . . 20 (-1 · -1) = 1
133132a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-1 · -1) = 1)
134133oveq1d 7447 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (1 · (ℑ‘𝐴)))
135130mullidd 11280 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
136134, 135eqtrd 2776 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (ℑ‘𝐴))
137130mulm1d 11716 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
138137oveq2d 7448 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · (-1 · (ℑ‘𝐴))) = (-1 · -(ℑ‘𝐴)))
139131, 136, 1383eqtr3rd 2785 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
140139adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
141135adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ ¬ (ℑ‘𝐴) < 0) → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
142140, 141ifeqda 4561 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴))) = (ℑ‘𝐴))
143127, 142eqtrid 2788 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = (ℑ‘𝐴))
144143oveq1d 7447 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = ((ℑ‘𝐴) / 2))
145126, 144eqtr3d 2778 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)) = ((ℑ‘𝐴) / 2))
146145oveq2d 7448 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (2 · ((ℑ‘𝐴) / 2)))
147130, 57, 59divcan2d 12046 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · ((ℑ‘𝐴) / 2)) = (ℑ‘𝐴))
148146, 147eqtrd 2776 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (ℑ‘𝐴))
14967, 122, 1483eqtrd 2780 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (ℑ‘𝐴))
150149oveq2d 7448 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (ℑ‘𝐴)))
15165, 66, 1503eqtr3d 2784 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (ℑ‘𝐴)))
15263, 151oveq12d 7450 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1531resqcld 14166 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℝ)
154153recnd 11290 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℂ)
1552, 12mulcld 11282 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
15657, 155mulcld 11282 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
15712sqcld 14185 . . . . . 6 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) ∈ ℂ)
158154, 156, 157add32d 11490 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
159 replim 15156 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
160152, 158, 1593eqtr4d 2786 . . . 4 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = 𝐴)
16116, 160eqtrd 2776 . . 3 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = 𝐴)
16220, 69sqrtge0d 15460 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
1631, 10crred 15271 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
164162, 163breqtrrd 5170 . . 3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
165 reim 15149 . . . . . . . . . 10 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
16613, 165syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
167166, 163eqtr3d 2778 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
168167eqeq1d 2738 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0))
169 cnsqrt00 15432 . . . . . . . 8 ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
17021, 169syl 17 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
171 half0 12496 . . . . . . . . 9 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17255, 171syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17349, 50addcomd 11464 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) = ((ℜ‘𝐴) + (abs‘𝐴)))
174173eqeq1d 2738 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) = 0 ↔ ((ℜ‘𝐴) + (abs‘𝐴)) = 0))
175 addeq0 11687 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
17650, 49, 175syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
177172, 174, 1763bitrd 305 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
178168, 170, 1773bitrd 305 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
179 olc 868 . . . . . . . 8 ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)))
180 eqcom 2743 . . . . . . . . . 10 (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2))
181180a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2)))
182 sqeqor 14256 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
18350, 49, 182syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
184103eqeq1d 2738 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2)))
185 addid0 11683 . . . . . . . . . . 11 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
18699, 102, 185syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
187 sqeq0 14161 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
188130, 187syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
189184, 186, 1883bitrd 305 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (ℑ‘𝐴) = 0))
190181, 183, 1893bitr3d 309 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)) ↔ (ℑ‘𝐴) = 0))
191179, 190imbitrid 244 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → (ℑ‘𝐴) = 0))
192191ancld 550 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
193178, 192sylbid 240 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
194 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) = -(abs‘𝐴))
195194oveq2d 7448 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = ((abs‘𝐴) + -(abs‘𝐴)))
196493ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (abs‘𝐴) ∈ ℂ)
197196negidd 11611 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + -(abs‘𝐴)) = 0)
198195, 197eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = 0)
199198oveq1d 7447 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = (0 / 2))
200 2cn 12342 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
201200, 58div0i 12002 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
202199, 201eqtrdi 2792 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0)
203202fveq2d 6909 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = (√‘0))
204 sqrt0 15281 . . . . . . . . . . . . . 14 (√‘0) = 0
205203, 204eqtrdi 2792 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0)
206 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0)
207 0red 11265 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 0 ∈ ℝ)
208207ltnrd 11396 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ 0 < 0)
209206, 208eqnbrtrd 5160 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ (ℑ‘𝐴) < 0)
210209iffalsed 4535 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → if((ℑ‘𝐴) < 0, -1, 1) = 1)
211194oveq2d 7448 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = ((abs‘𝐴) − -(abs‘𝐴)))
21249, 49subnegd 11628 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
213492timesd 12511 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
214212, 213eqtr4d 2779 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
2152143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
216211, 215eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = (2 · (abs‘𝐴)))
217216oveq1d 7447 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = ((2 · (abs‘𝐴)) / 2))
21849, 57, 59divcan3d 12049 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
2192183ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
220217, 219eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = (abs‘𝐴))
221220fveq2d 6909 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (√‘(abs‘𝐴)))
222210, 221oveq12d 7450 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (1 · (√‘(abs‘𝐴))))
223 absge0 15327 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
22417, 223resqrtcld 15457 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
225224recnd 11290 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
226225mullidd 11280 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
2272263ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
228222, 227eqtrd 2776 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (√‘(abs‘𝐴)))
229228oveq2d 7448 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (i · (√‘(abs‘𝐴))))
230205, 229oveq12d 7450 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (0 + (i · (√‘(abs‘𝐴)))))
2314, 225mulcld 11282 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · (√‘(abs‘𝐴))) ∈ ℂ)
2322313ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (√‘(abs‘𝐴))) ∈ ℂ)
233232addlidd 11463 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (0 + (i · (√‘(abs‘𝐴)))) = (i · (√‘(abs‘𝐴))))
234230, 233eqtrd 2776 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (√‘(abs‘𝐴))))
235234oveq2d 7448 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (i · (√‘(abs‘𝐴)))))
236 ixi 11893 . . . . . . . . . . . . . 14 (i · i) = -1
237236a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (i · i) = -1)
238237oveq1d 7447 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (-1 · (√‘(abs‘𝐴))))
2394, 4, 225mulassd 11285 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (i · (i · (√‘(abs‘𝐴)))))
240225mulm1d 11716 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-1 · (√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
241238, 239, 2403eqtr3d 2784 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
2422413ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
243235, 242eqtrd 2776 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = -(√‘(abs‘𝐴)))
244243fveq2d 6909 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (ℜ‘-(√‘(abs‘𝐴))))
245224renegcld 11691 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ∈ ℝ)
246245rered 15264 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
2472463ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
248244, 247eqtrd 2776 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = -(√‘(abs‘𝐴)))
24917, 223sqrtge0d 15460 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
250224le0neg2d 11836 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 ≤ (√‘(abs‘𝐴)) ↔ -(√‘(abs‘𝐴)) ≤ 0))
251249, 250mpbid 232 . . . . . . . 8 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ≤ 0)
2522513ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → -(√‘(abs‘𝐴)) ≤ 0)
253248, 252eqbrtrd 5164 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0)
2542533expib 1122 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
255193, 254syld 47 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
2564, 13mulcld 11282 . . . . 5 (𝐴 ∈ ℂ → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
257256sqrtcvallem1 43649 . . . 4 (𝐴 ∈ ℂ → (((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0) ↔ ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+))
258255, 257mpbid 232 . . 3 (𝐴 ∈ ℂ → ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+)
25913, 14, 161, 164, 258eqsqrtd 15407 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (√‘𝐴))
260259eqcomd 2742 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  ifcif 4524   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  +crp 13035  cexp 14103  cre 15137  cim 15138  csqrt 15273  abscabs 15274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276
This theorem is referenced by:  sqrtcval2  43660  resqrtval  43661  imsqrtval  43662
  Copyright terms: Public domain W3C validator