Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval Structured version   Visualization version   GIF version

Theorem sqrtcval 41219
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 14901 and crimi 14902. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))

Proof of Theorem sqrtcval
StepHypRef Expression
1 sqrtcvallem5 41218 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ)
21recnd 11004 . . . 4 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ)
3 ax-icn 10931 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
5 neg1rr 12088 . . . . . . . . 9 -1 ∈ ℝ
6 1re 10976 . . . . . . . . 9 1 ∈ ℝ
75, 6ifcli 4512 . . . . . . . 8 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
87a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
9 sqrtcvallem3 41216 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
108, 9remulcld 11006 . . . . . 6 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℝ)
1110recnd 11004 . . . . 5 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℂ)
124, 11mulcld 10996 . . . 4 (𝐴 ∈ ℂ → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ)
132, 12addcld 10995 . . 3 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
14 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
15 binom2 13931 . . . . 5 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ ∧ (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ) → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
162, 12, 15syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
17 abscl 14988 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
18 recl 14819 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1917, 18readdcld 11005 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
2019rehalfcld 12220 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℝ)
2120recnd 11004 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ)
2221sqsqrtd 15149 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
234, 11sqmuld 13874 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)))
24 i2 13917 . . . . . . . . . . 11 (i↑2) = -1
2524a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i↑2) = -1)
268recnd 11004 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
279recnd 11004 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2826, 27sqmuld 13874 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)))
29 ovif 7366 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = if((ℑ‘𝐴) < 0, (-1↑2), (1↑2))
30 neg1sqe1 13911 . . . . . . . . . . . . . . 15 (-1↑2) = 1
31 sq1 13910 . . . . . . . . . . . . . . 15 (1↑2) = 1
32 ifeq12 4483 . . . . . . . . . . . . . . 15 (((-1↑2) = 1 ∧ (1↑2) = 1) → if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1))
3330, 31, 32mp2an 689 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1)
34 ifid 4505 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, 1, 1) = 1
3529, 33, 343eqtri 2772 . . . . . . . . . . . . 13 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1
3635a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1)
3717, 18resubcld 11403 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ)
3837rehalfcld 12220 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℝ)
3938recnd 11004 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℂ)
4039sqsqrtd 15149 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4136, 40oveq12d 7289 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)) = (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4239mulid2d 10994 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4328, 41, 423eqtrd 2784 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4425, 43oveq12d 7289 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)) = (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4539mulm1d 11427 . . . . . . . . 9 (𝐴 ∈ ℂ → (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4623, 44, 453eqtrd 2784 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4722, 46oveq12d 7289 . . . . . . 7 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4821, 39negsubd 11338 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4917recnd 11004 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5018recnd 11004 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5149, 50, 50pnncand 11371 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
52502timesd 12216 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
5351, 52eqtr4d 2783 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = (2 · (ℜ‘𝐴)))
5453oveq1d 7286 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((2 · (ℜ‘𝐴)) / 2))
5519recnd 11004 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ)
5637recnd 11004 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℂ)
57 2cnd 12051 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ∈ ℂ)
58 2ne0 12077 . . . . . . . . . 10 2 ≠ 0
5958a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ≠ 0)
6055, 56, 57, 59divsubdird 11790 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
6150, 57, 59divcan3d 11756 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (ℜ‘𝐴)) / 2) = (ℜ‘𝐴))
6254, 60, 613eqtr3d 2788 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (ℜ‘𝐴))
6347, 48, 623eqtrd 2784 . . . . . 6 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = (ℜ‘𝐴))
6457, 2mulcld 10996 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) ∈ ℂ)
6564, 4, 11mul12d 11184 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
6657, 2, 12mulassd 10999 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
6757, 2, 11mulassd 10999 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
682, 26, 27mul12d 11184 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
69 sqrtcvallem4 41217 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
70 halfnneg2 12204 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7119, 70syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7269, 71mpbird 256 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)))
73 2rp 12734 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℝ+)
7519, 72, 74sqrtdivd 15133 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)))
76 sqrtcvallem2 41215 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
77 halfnneg2 12204 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7837, 77syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7976, 78mpbird 256 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)))
8037, 79, 74sqrtdivd 15133 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2)))
8175, 80oveq12d 7289 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))))
8219, 72resqrtcld 15127 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℝ)
8382recnd 11004 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℂ)
84 2re 12047 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 2 ∈ ℝ)
86 0le2 12075 . . . . . . . . . . . . . . . . 17 0 ≤ 2
8786a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ 2)
8885, 87resqrtcld 15127 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘2) ∈ ℝ)
8988recnd 11004 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ∈ ℂ)
9037, 79resqrtcld 15127 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℝ)
9190recnd 11004 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℂ)
92 sqrt00 14973 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
9384, 86, 92mp2an 689 . . . . . . . . . . . . . . . . 17 ((√‘2) = 0 ↔ 2 = 0)
9493necon3bii 2998 . . . . . . . . . . . . . . . 16 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
9558, 94mpbir 230 . . . . . . . . . . . . . . 15 (√‘2) ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ≠ 0)
9783, 89, 91, 89, 96, 96divmuldivd 11792 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))))
9818resqcld 13963 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
9998recnd 11004 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
100 imcl 14820 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
101100resqcld 13963 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
102101recnd 11004 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
103 absvalsq2 14991 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
10499, 102, 103mvrladdd 11388 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = ((ℑ‘𝐴)↑2))
105 subsq 13924 . . . . . . . . . . . . . . . . . 18 (((abs‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
10649, 50, 105syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
107104, 106eqtr3d 2782 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
108107fveq2d 6775 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))))
109100absred 15126 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (√‘((ℑ‘𝐴)↑2)))
110 reabsifneg 41210 . . . . . . . . . . . . . . . . 17 ((ℑ‘𝐴) ∈ ℝ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
112109, 111eqtr3d 2782 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
11319, 72, 37, 79sqrtmuld 15134 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))))
114108, 112, 1133eqtr3rd 2789 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
115 remsqsqrt 14966 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
11684, 86, 115mp2an 689 . . . . . . . . . . . . . . 15 ((√‘2) · (√‘2)) = 2
117116a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘2) · (√‘2)) = 2)
118114, 117oveq12d 7289 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
11981, 97, 1183eqtrd 2784 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
120119oveq2d 7287 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
12168, 120eqtrd 2780 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
122121oveq2d 7287 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))))
123100renegcld 11402 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
124123, 100ifcld 4511 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℝ)
125124recnd 11004 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℂ)
12626, 125, 57, 59divassd 11786 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
127 ovif12 7368 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴)))
1285a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -1 ∈ ℝ)
129128recnd 11004 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → -1 ∈ ℂ)
130100recnd 11004 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
131129, 129, 130mulassd 10999 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (-1 · (-1 · (ℑ‘𝐴))))
132 neg1mulneg1e1 12186 . . . . . . . . . . . . . . . . . . . 20 (-1 · -1) = 1
133132a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-1 · -1) = 1)
134133oveq1d 7286 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (1 · (ℑ‘𝐴)))
135130mulid2d 10994 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
136134, 135eqtrd 2780 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (ℑ‘𝐴))
137130mulm1d 11427 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
138137oveq2d 7287 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · (-1 · (ℑ‘𝐴))) = (-1 · -(ℑ‘𝐴)))
139131, 136, 1383eqtr3rd 2789 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
140139adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
141135adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ ¬ (ℑ‘𝐴) < 0) → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
142140, 141ifeqda 4501 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴))) = (ℑ‘𝐴))
143127, 142eqtrid 2792 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = (ℑ‘𝐴))
144143oveq1d 7286 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = ((ℑ‘𝐴) / 2))
145126, 144eqtr3d 2782 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)) = ((ℑ‘𝐴) / 2))
146145oveq2d 7287 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (2 · ((ℑ‘𝐴) / 2)))
147130, 57, 59divcan2d 11753 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · ((ℑ‘𝐴) / 2)) = (ℑ‘𝐴))
148146, 147eqtrd 2780 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (ℑ‘𝐴))
14967, 122, 1483eqtrd 2784 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (ℑ‘𝐴))
150149oveq2d 7287 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (ℑ‘𝐴)))
15165, 66, 1503eqtr3d 2788 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (ℑ‘𝐴)))
15263, 151oveq12d 7289 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1531resqcld 13963 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℝ)
154153recnd 11004 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℂ)
1552, 12mulcld 10996 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
15657, 155mulcld 10996 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
15712sqcld 13860 . . . . . 6 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) ∈ ℂ)
158154, 156, 157add32d 11202 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
159 replim 14825 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
160152, 158, 1593eqtr4d 2790 . . . 4 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = 𝐴)
16116, 160eqtrd 2780 . . 3 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = 𝐴)
16220, 69sqrtge0d 15130 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
1631, 10crred 14940 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
164162, 163breqtrrd 5107 . . 3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
165 reim 14818 . . . . . . . . . 10 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
16613, 165syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
167166, 163eqtr3d 2782 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
168167eqeq1d 2742 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0))
169 cnsqrt00 15102 . . . . . . . 8 ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
17021, 169syl 17 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
171 half0 12200 . . . . . . . . 9 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17255, 171syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17349, 50addcomd 11177 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) = ((ℜ‘𝐴) + (abs‘𝐴)))
174173eqeq1d 2742 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) = 0 ↔ ((ℜ‘𝐴) + (abs‘𝐴)) = 0))
175 addeq0 11398 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
17650, 49, 175syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
177172, 174, 1763bitrd 305 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
178168, 170, 1773bitrd 305 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
179 olc 865 . . . . . . . 8 ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)))
180 eqcom 2747 . . . . . . . . . 10 (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2))
181180a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2)))
182 sqeqor 13930 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
18350, 49, 182syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
184103eqeq1d 2742 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2)))
185 addid0 11394 . . . . . . . . . . 11 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
18699, 102, 185syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
187 sqeq0 13838 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
188130, 187syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
189184, 186, 1883bitrd 305 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (ℑ‘𝐴) = 0))
190181, 183, 1893bitr3d 309 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)) ↔ (ℑ‘𝐴) = 0))
191179, 190syl5ib 243 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → (ℑ‘𝐴) = 0))
192191ancld 551 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
193178, 192sylbid 239 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
194 simp2 1136 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) = -(abs‘𝐴))
195194oveq2d 7287 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = ((abs‘𝐴) + -(abs‘𝐴)))
196 simp1 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℂ)
197196, 49syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (abs‘𝐴) ∈ ℂ)
198197negidd 11322 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + -(abs‘𝐴)) = 0)
199195, 198eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = 0)
200199oveq1d 7286 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = (0 / 2))
201 2cn 12048 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
202201, 58div0i 11709 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
203200, 202eqtrdi 2796 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0)
204203fveq2d 6775 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = (√‘0))
205 sqrt0 14951 . . . . . . . . . . . . . 14 (√‘0) = 0
206204, 205eqtrdi 2796 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0)
207 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0)
208 0red 10979 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 0 ∈ ℝ)
209208ltnrd 11109 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ 0 < 0)
210207, 209eqnbrtrd 5097 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ (ℑ‘𝐴) < 0)
211210iffalsed 4476 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → if((ℑ‘𝐴) < 0, -1, 1) = 1)
212194oveq2d 7287 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = ((abs‘𝐴) − -(abs‘𝐴)))
21349, 49subnegd 11339 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
214492timesd 12216 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
215213, 214eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
216196, 215syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
217212, 216eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = (2 · (abs‘𝐴)))
218217oveq1d 7286 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = ((2 · (abs‘𝐴)) / 2))
21949, 57, 59divcan3d 11756 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
220196, 219syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
221218, 220eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = (abs‘𝐴))
222221fveq2d 6775 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (√‘(abs‘𝐴)))
223211, 222oveq12d 7289 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (1 · (√‘(abs‘𝐴))))
224 absge0 14997 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
22517, 224resqrtcld 15127 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
226225recnd 11004 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
227226mulid2d 10994 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
228196, 227syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
229223, 228eqtrd 2780 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (√‘(abs‘𝐴)))
230229oveq2d 7287 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (i · (√‘(abs‘𝐴))))
231206, 230oveq12d 7289 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (0 + (i · (√‘(abs‘𝐴)))))
2324, 226mulcld 10996 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · (√‘(abs‘𝐴))) ∈ ℂ)
233196, 232syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (√‘(abs‘𝐴))) ∈ ℂ)
234233addid2d 11176 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (0 + (i · (√‘(abs‘𝐴)))) = (i · (√‘(abs‘𝐴))))
235231, 234eqtrd 2780 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (√‘(abs‘𝐴))))
236235oveq2d 7287 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (i · (√‘(abs‘𝐴)))))
237 ixi 11604 . . . . . . . . . . . . . 14 (i · i) = -1
238237a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (i · i) = -1)
239238oveq1d 7286 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (-1 · (√‘(abs‘𝐴))))
2404, 4, 226mulassd 10999 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (i · (i · (√‘(abs‘𝐴)))))
241226mulm1d 11427 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-1 · (√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
242239, 240, 2413eqtr3d 2788 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
243196, 242syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
244236, 243eqtrd 2780 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = -(√‘(abs‘𝐴)))
245244fveq2d 6775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (ℜ‘-(√‘(abs‘𝐴))))
246225renegcld 11402 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ∈ ℝ)
247246rered 14933 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
248196, 247syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
249245, 248eqtrd 2780 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = -(√‘(abs‘𝐴)))
25017, 224sqrtge0d 15130 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
251225le0neg2d 11547 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 ≤ (√‘(abs‘𝐴)) ↔ -(√‘(abs‘𝐴)) ≤ 0))
252250, 251mpbid 231 . . . . . . . 8 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ≤ 0)
253196, 252syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → -(√‘(abs‘𝐴)) ≤ 0)
254249, 253eqbrtrd 5101 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0)
2552543expib 1121 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
256193, 255syld 47 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
2574, 13mulcld 10996 . . . . 5 (𝐴 ∈ ℂ → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
258257sqrtcvallem1 41209 . . . 4 (𝐴 ∈ ℂ → (((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0) ↔ ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+))
259256, 258mpbid 231 . . 3 (𝐴 ∈ ℂ → ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+)
26013, 14, 161, 164, 259eqsqrtd 15077 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (√‘𝐴))
261260eqcomd 2746 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  ifcif 4465   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873  ici 10874   + caddc 10875   · cmul 10877   < clt 11010  cle 11011  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12729  cexp 13780  cre 14806  cim 14807  csqrt 14942  abscabs 14943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945
This theorem is referenced by:  sqrtcval2  41220  resqrtval  41221  imsqrtval  41222
  Copyright terms: Public domain W3C validator