Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval Structured version   Visualization version   GIF version

Theorem sqrtcval 43630
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15158 and crimi 15159. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))

Proof of Theorem sqrtcval
StepHypRef Expression
1 sqrtcvallem5 43629 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ)
21recnd 11202 . . . 4 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ)
3 ax-icn 11127 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
5 neg1rr 12172 . . . . . . . . 9 -1 ∈ ℝ
6 1re 11174 . . . . . . . . 9 1 ∈ ℝ
75, 6ifcli 4536 . . . . . . . 8 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
87a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
9 sqrtcvallem3 43627 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
108, 9remulcld 11204 . . . . . 6 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℝ)
1110recnd 11202 . . . . 5 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℂ)
124, 11mulcld 11194 . . . 4 (𝐴 ∈ ℂ → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ)
132, 12addcld 11193 . . 3 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
14 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
15 binom2 14182 . . . . 5 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ ∧ (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ) → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
162, 12, 15syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
17 abscl 15244 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
18 recl 15076 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1917, 18readdcld 11203 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
2019rehalfcld 12429 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℝ)
2120recnd 11202 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ)
2221sqsqrtd 15408 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
234, 11sqmuld 14123 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)))
24 i2 14167 . . . . . . . . . . 11 (i↑2) = -1
2524a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i↑2) = -1)
268recnd 11202 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
279recnd 11202 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2826, 27sqmuld 14123 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)))
29 ovif 7487 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = if((ℑ‘𝐴) < 0, (-1↑2), (1↑2))
30 neg1sqe1 14161 . . . . . . . . . . . . . . 15 (-1↑2) = 1
31 sq1 14160 . . . . . . . . . . . . . . 15 (1↑2) = 1
32 ifeq12 4507 . . . . . . . . . . . . . . 15 (((-1↑2) = 1 ∧ (1↑2) = 1) → if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1))
3330, 31, 32mp2an 692 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1)
34 ifid 4529 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, 1, 1) = 1
3529, 33, 343eqtri 2756 . . . . . . . . . . . . 13 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1
3635a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1)
3717, 18resubcld 11606 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ)
3837rehalfcld 12429 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℝ)
3938recnd 11202 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℂ)
4039sqsqrtd 15408 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4136, 40oveq12d 7405 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)) = (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4239mullidd 11192 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4328, 41, 423eqtrd 2768 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4425, 43oveq12d 7405 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)) = (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4539mulm1d 11630 . . . . . . . . 9 (𝐴 ∈ ℂ → (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4623, 44, 453eqtrd 2768 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4722, 46oveq12d 7405 . . . . . . 7 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4821, 39negsubd 11539 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4917recnd 11202 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5018recnd 11202 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5149, 50, 50pnncand 11572 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
52502timesd 12425 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
5351, 52eqtr4d 2767 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = (2 · (ℜ‘𝐴)))
5453oveq1d 7402 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((2 · (ℜ‘𝐴)) / 2))
5519recnd 11202 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ)
5637recnd 11202 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℂ)
57 2cnd 12264 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ∈ ℂ)
58 2ne0 12290 . . . . . . . . . 10 2 ≠ 0
5958a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ≠ 0)
6055, 56, 57, 59divsubdird 11997 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
6150, 57, 59divcan3d 11963 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (ℜ‘𝐴)) / 2) = (ℜ‘𝐴))
6254, 60, 613eqtr3d 2772 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (ℜ‘𝐴))
6347, 48, 623eqtrd 2768 . . . . . 6 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = (ℜ‘𝐴))
6457, 2mulcld 11194 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) ∈ ℂ)
6564, 4, 11mul12d 11383 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
6657, 2, 12mulassd 11197 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
6757, 2, 11mulassd 11197 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
682, 26, 27mul12d 11383 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
69 sqrtcvallem4 43628 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
70 halfnneg2 12413 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7119, 70syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7269, 71mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)))
73 2rp 12956 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℝ+)
7519, 72, 74sqrtdivd 15390 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)))
76 sqrtcvallem2 43626 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
77 halfnneg2 12413 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7837, 77syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7976, 78mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)))
8037, 79, 74sqrtdivd 15390 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2)))
8175, 80oveq12d 7405 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))))
8219, 72resqrtcld 15384 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℝ)
8382recnd 11202 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℂ)
84 2re 12260 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 2 ∈ ℝ)
86 0le2 12288 . . . . . . . . . . . . . . . . 17 0 ≤ 2
8786a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ 2)
8885, 87resqrtcld 15384 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘2) ∈ ℝ)
8988recnd 11202 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ∈ ℂ)
9037, 79resqrtcld 15384 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℝ)
9190recnd 11202 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℂ)
92 sqrt00 15229 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
9384, 86, 92mp2an 692 . . . . . . . . . . . . . . . . 17 ((√‘2) = 0 ↔ 2 = 0)
9493necon3bii 2977 . . . . . . . . . . . . . . . 16 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
9558, 94mpbir 231 . . . . . . . . . . . . . . 15 (√‘2) ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ≠ 0)
9783, 89, 91, 89, 96, 96divmuldivd 11999 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))))
9818resqcld 14090 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
9998recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
100 imcl 15077 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
101100resqcld 14090 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
102101recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
103 absvalsq2 15247 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
10499, 102, 103mvrladdd 11591 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = ((ℑ‘𝐴)↑2))
105 subsq 14175 . . . . . . . . . . . . . . . . . 18 (((abs‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
10649, 50, 105syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
107104, 106eqtr3d 2766 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
108107fveq2d 6862 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))))
109100absred 15383 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (√‘((ℑ‘𝐴)↑2)))
110 reabsifneg 43621 . . . . . . . . . . . . . . . . 17 ((ℑ‘𝐴) ∈ ℝ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
112109, 111eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
11319, 72, 37, 79sqrtmuld 15391 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))))
114108, 112, 1133eqtr3rd 2773 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
115 remsqsqrt 15222 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
11684, 86, 115mp2an 692 . . . . . . . . . . . . . . 15 ((√‘2) · (√‘2)) = 2
117116a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘2) · (√‘2)) = 2)
118114, 117oveq12d 7405 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
11981, 97, 1183eqtrd 2768 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
120119oveq2d 7403 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
12168, 120eqtrd 2764 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
122121oveq2d 7403 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))))
123100renegcld 11605 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
124123, 100ifcld 4535 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℝ)
125124recnd 11202 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℂ)
12626, 125, 57, 59divassd 11993 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
127 ovif12 7489 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴)))
1285a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -1 ∈ ℝ)
129128recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → -1 ∈ ℂ)
130100recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
131129, 129, 130mulassd 11197 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (-1 · (-1 · (ℑ‘𝐴))))
132 neg1mulneg1e1 12394 . . . . . . . . . . . . . . . . . . . 20 (-1 · -1) = 1
133132a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-1 · -1) = 1)
134133oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (1 · (ℑ‘𝐴)))
135130mullidd 11192 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
136134, 135eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (ℑ‘𝐴))
137130mulm1d 11630 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
138137oveq2d 7403 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · (-1 · (ℑ‘𝐴))) = (-1 · -(ℑ‘𝐴)))
139131, 136, 1383eqtr3rd 2773 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
140139adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
141135adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ ¬ (ℑ‘𝐴) < 0) → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
142140, 141ifeqda 4525 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴))) = (ℑ‘𝐴))
143127, 142eqtrid 2776 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = (ℑ‘𝐴))
144143oveq1d 7402 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = ((ℑ‘𝐴) / 2))
145126, 144eqtr3d 2766 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)) = ((ℑ‘𝐴) / 2))
146145oveq2d 7403 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (2 · ((ℑ‘𝐴) / 2)))
147130, 57, 59divcan2d 11960 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · ((ℑ‘𝐴) / 2)) = (ℑ‘𝐴))
148146, 147eqtrd 2764 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (ℑ‘𝐴))
14967, 122, 1483eqtrd 2768 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (ℑ‘𝐴))
150149oveq2d 7403 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (ℑ‘𝐴)))
15165, 66, 1503eqtr3d 2772 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (ℑ‘𝐴)))
15263, 151oveq12d 7405 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1531resqcld 14090 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℝ)
154153recnd 11202 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℂ)
1552, 12mulcld 11194 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
15657, 155mulcld 11194 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
15712sqcld 14109 . . . . . 6 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) ∈ ℂ)
158154, 156, 157add32d 11402 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
159 replim 15082 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
160152, 158, 1593eqtr4d 2774 . . . 4 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = 𝐴)
16116, 160eqtrd 2764 . . 3 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = 𝐴)
16220, 69sqrtge0d 15387 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
1631, 10crred 15197 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
164162, 163breqtrrd 5135 . . 3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
165 reim 15075 . . . . . . . . . 10 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
16613, 165syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
167166, 163eqtr3d 2766 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
168167eqeq1d 2731 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0))
169 cnsqrt00 15359 . . . . . . . 8 ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
17021, 169syl 17 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
171 half0 12410 . . . . . . . . 9 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17255, 171syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17349, 50addcomd 11376 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) = ((ℜ‘𝐴) + (abs‘𝐴)))
174173eqeq1d 2731 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) = 0 ↔ ((ℜ‘𝐴) + (abs‘𝐴)) = 0))
175 addeq0 11601 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
17650, 49, 175syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
177172, 174, 1763bitrd 305 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
178168, 170, 1773bitrd 305 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
179 olc 868 . . . . . . . 8 ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)))
180 eqcom 2736 . . . . . . . . . 10 (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2))
181180a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2)))
182 sqeqor 14181 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
18350, 49, 182syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
184103eqeq1d 2731 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2)))
185 addid0 11597 . . . . . . . . . . 11 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
18699, 102, 185syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
187 sqeq0 14085 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
188130, 187syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
189184, 186, 1883bitrd 305 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (ℑ‘𝐴) = 0))
190181, 183, 1893bitr3d 309 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)) ↔ (ℑ‘𝐴) = 0))
191179, 190imbitrid 244 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → (ℑ‘𝐴) = 0))
192191ancld 550 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
193178, 192sylbid 240 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
194 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) = -(abs‘𝐴))
195194oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = ((abs‘𝐴) + -(abs‘𝐴)))
196493ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (abs‘𝐴) ∈ ℂ)
197196negidd 11523 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + -(abs‘𝐴)) = 0)
198195, 197eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = 0)
199198oveq1d 7402 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = (0 / 2))
200 2cn 12261 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
201200, 58div0i 11916 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
202199, 201eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0)
203202fveq2d 6862 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = (√‘0))
204 sqrt0 15207 . . . . . . . . . . . . . 14 (√‘0) = 0
205203, 204eqtrdi 2780 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0)
206 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0)
207 0red 11177 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 0 ∈ ℝ)
208207ltnrd 11308 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ 0 < 0)
209206, 208eqnbrtrd 5125 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ (ℑ‘𝐴) < 0)
210209iffalsed 4499 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → if((ℑ‘𝐴) < 0, -1, 1) = 1)
211194oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = ((abs‘𝐴) − -(abs‘𝐴)))
21249, 49subnegd 11540 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
213492timesd 12425 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
214212, 213eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
2152143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
216211, 215eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = (2 · (abs‘𝐴)))
217216oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = ((2 · (abs‘𝐴)) / 2))
21849, 57, 59divcan3d 11963 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
2192183ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
220217, 219eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = (abs‘𝐴))
221220fveq2d 6862 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (√‘(abs‘𝐴)))
222210, 221oveq12d 7405 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (1 · (√‘(abs‘𝐴))))
223 absge0 15253 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
22417, 223resqrtcld 15384 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
225224recnd 11202 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
226225mullidd 11192 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
2272263ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
228222, 227eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (√‘(abs‘𝐴)))
229228oveq2d 7403 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (i · (√‘(abs‘𝐴))))
230205, 229oveq12d 7405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (0 + (i · (√‘(abs‘𝐴)))))
2314, 225mulcld 11194 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · (√‘(abs‘𝐴))) ∈ ℂ)
2322313ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (√‘(abs‘𝐴))) ∈ ℂ)
233232addlidd 11375 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (0 + (i · (√‘(abs‘𝐴)))) = (i · (√‘(abs‘𝐴))))
234230, 233eqtrd 2764 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (√‘(abs‘𝐴))))
235234oveq2d 7403 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (i · (√‘(abs‘𝐴)))))
236 ixi 11807 . . . . . . . . . . . . . 14 (i · i) = -1
237236a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (i · i) = -1)
238237oveq1d 7402 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (-1 · (√‘(abs‘𝐴))))
2394, 4, 225mulassd 11197 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (i · (i · (√‘(abs‘𝐴)))))
240225mulm1d 11630 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-1 · (√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
241238, 239, 2403eqtr3d 2772 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
2422413ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
243235, 242eqtrd 2764 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = -(√‘(abs‘𝐴)))
244243fveq2d 6862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (ℜ‘-(√‘(abs‘𝐴))))
245224renegcld 11605 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ∈ ℝ)
246245rered 15190 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
2472463ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
248244, 247eqtrd 2764 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = -(√‘(abs‘𝐴)))
24917, 223sqrtge0d 15387 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
250224le0neg2d 11750 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 ≤ (√‘(abs‘𝐴)) ↔ -(√‘(abs‘𝐴)) ≤ 0))
251249, 250mpbid 232 . . . . . . . 8 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ≤ 0)
2522513ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → -(√‘(abs‘𝐴)) ≤ 0)
253248, 252eqbrtrd 5129 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0)
2542533expib 1122 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
255193, 254syld 47 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
2564, 13mulcld 11194 . . . . 5 (𝐴 ∈ ℂ → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
257256sqrtcvallem1 43620 . . . 4 (𝐴 ∈ ℂ → (((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0) ↔ ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+))
258255, 257mpbid 232 . . 3 (𝐴 ∈ ℂ → ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+)
25913, 14, 161, 164, 258eqsqrtd 15334 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (√‘𝐴))
260259eqcomd 2735 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  cexp 14026  cre 15063  cim 15064  csqrt 15199  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  sqrtcval2  43631  resqrtval  43632  imsqrtval  43633
  Copyright terms: Public domain W3C validator