Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtcval Structured version   Visualization version   GIF version

Theorem sqrtcval 43739
Description: Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15105 and crimi 15106. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.)
Assertion
Ref Expression
sqrtcval (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))

Proof of Theorem sqrtcval
StepHypRef Expression
1 sqrtcvallem5 43738 . . . . 5 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ)
21recnd 11146 . . . 4 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ)
3 ax-icn 11071 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
5 neg1rr 12117 . . . . . . . . 9 -1 ∈ ℝ
6 1re 11118 . . . . . . . . 9 1 ∈ ℝ
75, 6ifcli 4522 . . . . . . . 8 if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ
87a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℝ)
9 sqrtcvallem3 43736 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ)
108, 9remulcld 11148 . . . . . 6 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℝ)
1110recnd 11146 . . . . 5 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) ∈ ℂ)
124, 11mulcld 11138 . . . 4 (𝐴 ∈ ℂ → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ)
132, 12addcld 11137 . . 3 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
14 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
15 binom2 14130 . . . . 5 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℂ ∧ (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) ∈ ℂ) → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
162, 12, 15syl2anc 584 . . . 4 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)))
17 abscl 15191 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
18 recl 15023 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1917, 18readdcld 11147 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
2019rehalfcld 12374 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℝ)
2120recnd 11146 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ)
2221sqsqrtd 15355 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
234, 11sqmuld 14071 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)))
24 i2 14115 . . . . . . . . . . 11 (i↑2) = -1
2524a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i↑2) = -1)
268recnd 11146 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -1, 1) ∈ ℂ)
279recnd 11146 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℂ)
2826, 27sqmuld 14071 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)))
29 ovif 7450 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = if((ℑ‘𝐴) < 0, (-1↑2), (1↑2))
30 neg1sqe1 14109 . . . . . . . . . . . . . . 15 (-1↑2) = 1
31 sq1 14108 . . . . . . . . . . . . . . 15 (1↑2) = 1
32 ifeq12 4493 . . . . . . . . . . . . . . 15 (((-1↑2) = 1 ∧ (1↑2) = 1) → if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1))
3330, 31, 32mp2an 692 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, (-1↑2), (1↑2)) = if((ℑ‘𝐴) < 0, 1, 1)
34 ifid 4515 . . . . . . . . . . . . . 14 if((ℑ‘𝐴) < 0, 1, 1) = 1
3529, 33, 343eqtri 2758 . . . . . . . . . . . . 13 (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1
3635a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1)↑2) = 1)
3717, 18resubcld 11551 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ)
3837rehalfcld 12374 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℝ)
3938recnd 11146 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) ∈ ℂ)
4039sqsqrtd 15355 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4136, 40oveq12d 7370 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1)↑2) · ((√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))↑2)) = (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4239mullidd 11136 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4328, 41, 423eqtrd 2770 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2) = (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4425, 43oveq12d 7370 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i↑2) · ((if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))↑2)) = (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4539mulm1d 11575 . . . . . . . . 9 (𝐴 ∈ ℂ → (-1 · (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4623, 44, 453eqtrd 2770 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) = -(((abs‘𝐴) − (ℜ‘𝐴)) / 2))
4722, 46oveq12d 7370 . . . . . . 7 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4821, 39negsubd 11484 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) + -(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
4917recnd 11146 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5018recnd 11146 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5149, 50, 50pnncand 11517 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
52502timesd 12370 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (ℜ‘𝐴)) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
5351, 52eqtr4d 2769 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) = (2 · (ℜ‘𝐴)))
5453oveq1d 7367 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((2 · (ℜ‘𝐴)) / 2))
5519recnd 11146 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ)
5637recnd 11146 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℂ)
57 2cnd 12209 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ∈ ℂ)
58 2ne0 12235 . . . . . . . . . 10 2 ≠ 0
5958a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → 2 ≠ 0)
6055, 56, 57, 59divsubdird 11942 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) − ((abs‘𝐴) − (ℜ‘𝐴))) / 2) = ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
6150, 57, 59divcan3d 11908 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (ℜ‘𝐴)) / 2) = (ℜ‘𝐴))
6254, 60, 613eqtr3d 2774 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) − (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (ℜ‘𝐴))
6347, 48, 623eqtrd 2770 . . . . . 6 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = (ℜ‘𝐴))
6457, 2mulcld 11138 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) ∈ ℂ)
6564, 4, 11mul12d 11328 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
6657, 2, 12mulassd 11141 . . . . . . 7 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
6757, 2, 11mulassd 11141 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
682, 26, 27mul12d 11328 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))
69 sqrtcvallem4 43737 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2))
70 halfnneg2 12358 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7119, 70syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
7269, 71mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) + (ℜ‘𝐴)))
73 2rp 12901 . . . . . . . . . . . . . . . 16 2 ∈ ℝ+
7473a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℝ+)
7519, 72, 74sqrtdivd 15337 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)))
76 sqrtcvallem2 43735 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2))
77 halfnneg2 12358 . . . . . . . . . . . . . . . . 17 (((abs‘𝐴) − (ℜ‘𝐴)) ∈ ℝ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7837, 77syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)) ↔ 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)))
7976, 78mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ≤ ((abs‘𝐴) − (ℜ‘𝐴)))
8037, 79, 74sqrtdivd 15337 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2)))
8175, 80oveq12d 7370 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))))
8219, 72resqrtcld 15331 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℝ)
8382recnd 11146 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) + (ℜ‘𝐴))) ∈ ℂ)
84 2re 12205 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
8584a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 2 ∈ ℝ)
86 0le2 12233 . . . . . . . . . . . . . . . . 17 0 ≤ 2
8786a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ 2)
8885, 87resqrtcld 15331 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘2) ∈ ℝ)
8988recnd 11146 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ∈ ℂ)
9037, 79resqrtcld 15331 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℝ)
9190recnd 11146 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘((abs‘𝐴) − (ℜ‘𝐴))) ∈ ℂ)
92 sqrt00 15176 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) = 0 ↔ 2 = 0))
9384, 86, 92mp2an 692 . . . . . . . . . . . . . . . . 17 ((√‘2) = 0 ↔ 2 = 0)
9493necon3bii 2980 . . . . . . . . . . . . . . . 16 ((√‘2) ≠ 0 ↔ 2 ≠ 0)
9558, 94mpbir 231 . . . . . . . . . . . . . . 15 (√‘2) ≠ 0
9695a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (√‘2) ≠ 0)
9783, 89, 91, 89, 96, 96divmuldivd 11944 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) / (√‘2)) · ((√‘((abs‘𝐴) − (ℜ‘𝐴))) / (√‘2))) = (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))))
9818resqcld 14038 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
9998recnd 11146 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
100 imcl 15024 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
101100resqcld 14038 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
102101recnd 11146 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
103 absvalsq2 15194 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
10499, 102, 103mvrladdd 11536 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = ((ℑ‘𝐴)↑2))
105 subsq 14123 . . . . . . . . . . . . . . . . . 18 (((abs‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
10649, 50, 105syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) − ((ℜ‘𝐴)↑2)) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
107104, 106eqtr3d 2768 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = (((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴))))
108107fveq2d 6832 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))))
109100absred 15330 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (√‘((ℑ‘𝐴)↑2)))
110 reabsifneg 43730 . . . . . . . . . . . . . . . . 17 ((ℑ‘𝐴) ∈ ℝ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
111100, 110syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
112109, 111eqtr3d 2768 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘((ℑ‘𝐴)↑2)) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
11319, 72, 37, 79sqrtmuld 15338 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) · ((abs‘𝐴) − (ℜ‘𝐴)))) = ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))))
114108, 112, 1133eqtr3rd 2775 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) = if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)))
115 remsqsqrt 15169 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2) · (√‘2)) = 2)
11684, 86, 115mp2an 692 . . . . . . . . . . . . . . 15 ((√‘2) · (√‘2)) = 2
117116a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((√‘2) · (√‘2)) = 2)
118114, 117oveq12d 7370 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (((√‘((abs‘𝐴) + (ℜ‘𝐴))) · (√‘((abs‘𝐴) − (ℜ‘𝐴)))) / ((√‘2) · (√‘2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
11981, 97, 1183eqtrd 2770 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))
120119oveq2d 7368 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
12168, 120eqtrd 2766 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
122121oveq2d 7368 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))))
123100renegcld 11550 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
124123, 100ifcld 4521 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℝ)
125124recnd 11146 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) ∈ ℂ)
12626, 125, 57, 59divassd 11938 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)))
127 ovif12 7452 . . . . . . . . . . . . . 14 (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴)))
1285a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -1 ∈ ℝ)
129128recnd 11146 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → -1 ∈ ℂ)
130100recnd 11146 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
131129, 129, 130mulassd 11141 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (-1 · (-1 · (ℑ‘𝐴))))
132 neg1mulneg1e1 12339 . . . . . . . . . . . . . . . . . . . 20 (-1 · -1) = 1
133132a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-1 · -1) = 1)
134133oveq1d 7367 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (1 · (ℑ‘𝐴)))
135130mullidd 11136 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
136134, 135eqtrd 2766 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((-1 · -1) · (ℑ‘𝐴)) = (ℑ‘𝐴))
137130mulm1d 11575 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
138137oveq2d 7368 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-1 · (-1 · (ℑ‘𝐴))) = (-1 · -(ℑ‘𝐴)))
139131, 136, 1383eqtr3rd 2775 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
140139adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) < 0) → (-1 · -(ℑ‘𝐴)) = (ℑ‘𝐴))
141135adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ ¬ (ℑ‘𝐴) < 0) → (1 · (ℑ‘𝐴)) = (ℑ‘𝐴))
142140, 141ifeqda 4511 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → if((ℑ‘𝐴) < 0, (-1 · -(ℑ‘𝐴)), (1 · (ℑ‘𝐴))) = (ℑ‘𝐴))
143127, 142eqtrid 2778 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) = (ℑ‘𝐴))
144143oveq1d 7367 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((if((ℑ‘𝐴) < 0, -1, 1) · if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴))) / 2) = ((ℑ‘𝐴) / 2))
145126, 144eqtr3d 2768 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2)) = ((ℑ‘𝐴) / 2))
146145oveq2d 7368 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (2 · ((ℑ‘𝐴) / 2)))
147130, 57, 59divcan2d 11905 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · ((ℑ‘𝐴) / 2)) = (ℑ‘𝐴))
148146, 147eqtrd 2766 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (if((ℑ‘𝐴) < 0, -1, 1) · (if((ℑ‘𝐴) < 0, -(ℑ‘𝐴), (ℑ‘𝐴)) / 2))) = (ℑ‘𝐴))
14967, 122, 1483eqtrd 2770 . . . . . . . 8 (𝐴 ∈ ℂ → ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (ℑ‘𝐴))
150149oveq2d 7368 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((2 · (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (ℑ‘𝐴)))
15165, 66, 1503eqtr3d 2774 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (ℑ‘𝐴)))
15263, 151oveq12d 7370 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
1531resqcld 14038 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℝ)
154153recnd 11146 . . . . . 6 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) ∈ ℂ)
1552, 12mulcld 11138 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ)
15657, 155mulcld 11138 . . . . . 6 (𝐴 ∈ ℂ → (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
15712sqcld 14057 . . . . . 6 (𝐴 ∈ ℂ → ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2) ∈ ℂ)
158154, 156, 157add32d 11347 . . . . 5 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
159 replim 15029 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
160152, 158, 1593eqtr4d 2776 . . . 4 (𝐴 ∈ ℂ → ((((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))↑2) + (2 · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) · (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) + ((i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))↑2)) = 𝐴)
16116, 160eqtrd 2766 . . 3 (𝐴 ∈ ℂ → (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))↑2) = 𝐴)
16220, 69sqrtge0d 15334 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
1631, 10crred 15144 . . . 4 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
164162, 163breqtrrd 5121 . . 3 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))))
165 reim 15022 . . . . . . . . . 10 (((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
16613, 165syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))))
167166, 163eqtr3d 2768 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)))
168167eqeq1d 2733 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0))
169 cnsqrt00 15306 . . . . . . . 8 ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
17021, 169syl 17 . . . . . . 7 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0 ↔ (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0))
171 half0 12355 . . . . . . . . 9 (((abs‘𝐴) + (ℜ‘𝐴)) ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17255, 171syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ ((abs‘𝐴) + (ℜ‘𝐴)) = 0))
17349, 50addcomd 11321 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) + (ℜ‘𝐴)) = ((ℜ‘𝐴) + (abs‘𝐴)))
174173eqeq1d 2733 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + (ℜ‘𝐴)) = 0 ↔ ((ℜ‘𝐴) + (abs‘𝐴)) = 0))
175 addeq0 11546 . . . . . . . . 9 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
17650, 49, 175syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (abs‘𝐴)) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
177172, 174, 1763bitrd 305 . . . . . . 7 (𝐴 ∈ ℂ → ((((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
178168, 170, 1773bitrd 305 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 ↔ (ℜ‘𝐴) = -(abs‘𝐴)))
179 olc 868 . . . . . . . 8 ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)))
180 eqcom 2738 . . . . . . . . . 10 (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2))
181180a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2)))
182 sqeqor 14129 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
18350, 49, 182syl2anc 584 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) = ((abs‘𝐴)↑2) ↔ ((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴))))
184103eqeq1d 2733 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2)))
185 addid0 11542 . . . . . . . . . . 11 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
18699, 102, 185syl2anc 584 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = ((ℜ‘𝐴)↑2) ↔ ((ℑ‘𝐴)↑2) = 0))
187 sqeq0 14033 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
188130, 187syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) = 0 ↔ (ℑ‘𝐴) = 0))
189184, 186, 1883bitrd 305 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) = ((ℜ‘𝐴)↑2) ↔ (ℑ‘𝐴) = 0))
190181, 183, 1893bitr3d 309 . . . . . . . 8 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = (abs‘𝐴) ∨ (ℜ‘𝐴) = -(abs‘𝐴)) ↔ (ℑ‘𝐴) = 0))
191179, 190imbitrid 244 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → (ℑ‘𝐴) = 0))
192191ancld 550 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) = -(abs‘𝐴) → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
193178, 192sylbid 240 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → ((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0)))
194 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) = -(abs‘𝐴))
195194oveq2d 7368 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = ((abs‘𝐴) + -(abs‘𝐴)))
196493ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (abs‘𝐴) ∈ ℂ)
197196negidd 11468 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + -(abs‘𝐴)) = 0)
198195, 197eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) + (ℜ‘𝐴)) = 0)
199198oveq1d 7367 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = (0 / 2))
200 2cn 12206 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
201200, 58div0i 11861 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
202199, 201eqtrdi 2782 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) + (ℜ‘𝐴)) / 2) = 0)
203202fveq2d 6832 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = (√‘0))
204 sqrt0 15154 . . . . . . . . . . . . . 14 (√‘0) = 0
205203, 204eqtrdi 2782 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) = 0)
206 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℑ‘𝐴) = 0)
207 0red 11121 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → 0 ∈ ℝ)
208207ltnrd 11253 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ 0 < 0)
209206, 208eqnbrtrd 5111 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ¬ (ℑ‘𝐴) < 0)
210209iffalsed 4485 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → if((ℑ‘𝐴) < 0, -1, 1) = 1)
211194oveq2d 7368 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = ((abs‘𝐴) − -(abs‘𝐴)))
21249, 49subnegd 11485 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
213492timesd 12370 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
214212, 213eqtr4d 2769 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
2152143ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − -(abs‘𝐴)) = (2 · (abs‘𝐴)))
216211, 215eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((abs‘𝐴) − (ℜ‘𝐴)) = (2 · (abs‘𝐴)))
217216oveq1d 7367 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = ((2 · (abs‘𝐴)) / 2))
21849, 57, 59divcan3d 11908 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
2192183ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((2 · (abs‘𝐴)) / 2) = (abs‘𝐴))
220217, 219eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (((abs‘𝐴) − (ℜ‘𝐴)) / 2) = (abs‘𝐴))
221220fveq2d 6832 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) = (√‘(abs‘𝐴)))
222210, 221oveq12d 7370 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (1 · (√‘(abs‘𝐴))))
223 absge0 15200 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
22417, 223resqrtcld 15331 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
225224recnd 11146 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
226225mullidd 11136 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
2272263ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (1 · (√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
228222, 227eqtrd 2766 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))) = (√‘(abs‘𝐴)))
229228oveq2d 7368 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) = (i · (√‘(abs‘𝐴))))
230205, 229oveq12d 7370 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (0 + (i · (√‘(abs‘𝐴)))))
2314, 225mulcld 11138 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · (√‘(abs‘𝐴))) ∈ ℂ)
2322313ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (√‘(abs‘𝐴))) ∈ ℂ)
233232addlidd 11320 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (0 + (i · (√‘(abs‘𝐴)))) = (i · (√‘(abs‘𝐴))))
234230, 233eqtrd 2766 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (i · (√‘(abs‘𝐴))))
235234oveq2d 7368 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = (i · (i · (√‘(abs‘𝐴)))))
236 ixi 11752 . . . . . . . . . . . . . 14 (i · i) = -1
237236a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (i · i) = -1)
238237oveq1d 7367 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (-1 · (√‘(abs‘𝐴))))
2394, 4, 225mulassd 11141 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · i) · (√‘(abs‘𝐴))) = (i · (i · (√‘(abs‘𝐴)))))
240225mulm1d 11575 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-1 · (√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
241238, 239, 2403eqtr3d 2774 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
2422413ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · (i · (√‘(abs‘𝐴)))) = -(√‘(abs‘𝐴)))
243235, 242eqtrd 2766 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) = -(√‘(abs‘𝐴)))
244243fveq2d 6832 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = (ℜ‘-(√‘(abs‘𝐴))))
245224renegcld 11550 . . . . . . . . . 10 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ∈ ℝ)
246245rered 15137 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
2472463ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘-(√‘(abs‘𝐴))) = -(√‘(abs‘𝐴)))
248244, 247eqtrd 2766 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = -(√‘(abs‘𝐴)))
24917, 223sqrtge0d 15334 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
250224le0neg2d 11695 . . . . . . . . 9 (𝐴 ∈ ℂ → (0 ≤ (√‘(abs‘𝐴)) ↔ -(√‘(abs‘𝐴)) ≤ 0))
251249, 250mpbid 232 . . . . . . . 8 (𝐴 ∈ ℂ → -(√‘(abs‘𝐴)) ≤ 0)
2522513ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → -(√‘(abs‘𝐴)) ≤ 0)
253248, 252eqbrtrd 5115 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0)
2542533expib 1122 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) = -(abs‘𝐴) ∧ (ℑ‘𝐴) = 0) → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
255193, 254syld 47 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0))
2564, 13mulcld 11138 . . . . 5 (𝐴 ∈ ℂ → (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℂ)
257256sqrtcvallem1 43729 . . . 4 (𝐴 ∈ ℂ → (((ℑ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) = 0 → (ℜ‘(i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))) ≤ 0) ↔ ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+))
258255, 257mpbid 232 . . 3 (𝐴 ∈ ℂ → ¬ (i · ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) ∈ ℝ+)
25913, 14, 161, 164, 258eqsqrtd 15281 . 2 (𝐴 ∈ ℂ → ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) = (√‘𝐴))
260259eqcomd 2737 1 (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  ifcif 4474   class class class wbr 5093  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013  ici 11014   + caddc 11015   · cmul 11017   < clt 11152  cle 11153  cmin 11350  -cneg 11351   / cdiv 11780  2c2 12186  +crp 12896  cexp 13974  cre 15010  cim 15011  csqrt 15146  abscabs 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149
This theorem is referenced by:  sqrtcval2  43740  resqrtval  43741  imsqrtval  43742
  Copyright terms: Public domain W3C validator