Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Visualization version   GIF version

Theorem elrfirn2 39286
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵,𝑦   𝑣,𝐶   𝑣,𝐼,𝑦   𝑣,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem elrfirn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5239 . . . . . . 7 (𝐵𝑉 → (𝐶 ∈ 𝒫 𝐵𝐶𝐵))
21biimprd 250 . . . . . 6 (𝐵𝑉 → (𝐶𝐵𝐶 ∈ 𝒫 𝐵))
32ralimdv 3178 . . . . 5 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵))
43imp 409 . . . 4 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵)
5 eqid 2821 . . . . 5 (𝑦𝐼𝐶) = (𝑦𝐼𝐶)
65fmpt 6868 . . . 4 (∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
74, 6sylib 220 . . 3 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
8 elrfirn 39285 . . 3 ((𝐵𝑉 ∧ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
97, 8syldan 593 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
10 inss1 4204 . . . . . 6 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
1110sseli 3962 . . . . 5 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
1211elpwid 4552 . . . 4 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
13 nffvmpt1 6675 . . . . . . . 8 𝑦((𝑦𝐼𝐶)‘𝑧)
14 nfcv 2977 . . . . . . . 8 𝑧((𝑦𝐼𝐶)‘𝑦)
15 fveq2 6664 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑦𝐼𝐶)‘𝑧) = ((𝑦𝐼𝐶)‘𝑦))
1613, 14, 15cbviin 4954 . . . . . . 7 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦)
17 simplr 767 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝑦𝐼)
18 simpll 765 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐵𝑉)
19 simpr 487 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶𝐵)
2018, 19ssexd 5220 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶 ∈ V)
215fvmpt2 6773 . . . . . . . . . . . . 13 ((𝑦𝐼𝐶 ∈ V) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2217, 20, 21syl2anc 586 . . . . . . . . . . . 12 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2322ex 415 . . . . . . . . . . 11 ((𝐵𝑉𝑦𝐼) → (𝐶𝐵 → ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2423ralimdva 3177 . . . . . . . . . 10 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2524imp 409 . . . . . . . . 9 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
26 ssralv 4032 . . . . . . . . 9 (𝑣𝐼 → (∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2725, 26mpan9 509 . . . . . . . 8 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
28 iineq2 4931 . . . . . . . 8 (∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
2927, 28syl 17 . . . . . . 7 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
3016, 29syl5eq 2868 . . . . . 6 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 𝐶)
3130ineq2d 4188 . . . . 5 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) = (𝐵 𝑦𝑣 𝐶))
3231eqeq2d 2832 . . . 4 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3312, 32sylan2 594 . . 3 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3433rexbidva 3296 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
359, 34bitrd 281 1 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cun 3933  cin 3934  wss 3935  𝒫 cpw 4538  {csn 4560   ciin 4912  cmpt 5138  ran crn 5550  wf 6345  cfv 6349  Fincfn 8503  ficfi 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869
This theorem is referenced by:  cmpfiiin  39287
  Copyright terms: Public domain W3C validator