Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrfirn2 Structured version   Visualization version   GIF version

Theorem elrfirn2 42691
Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
elrfirn2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵,𝑦   𝑣,𝐶   𝑣,𝐼,𝑦   𝑣,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem elrfirn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elpw2g 5291 . . . . . . 7 (𝐵𝑉 → (𝐶 ∈ 𝒫 𝐵𝐶𝐵))
21biimprd 248 . . . . . 6 (𝐵𝑉 → (𝐶𝐵𝐶 ∈ 𝒫 𝐵))
32ralimdv 3148 . . . . 5 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵))
43imp 406 . . . 4 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵)
5 eqid 2730 . . . . 5 (𝑦𝐼𝐶) = (𝑦𝐼𝐶)
65fmpt 7085 . . . 4 (∀𝑦𝐼 𝐶 ∈ 𝒫 𝐵 ↔ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
74, 6sylib 218 . . 3 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵)
8 elrfirn 42690 . . 3 ((𝐵𝑉 ∧ (𝑦𝐼𝐶):𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
97, 8syldan 591 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧))))
10 inss1 4203 . . . . . 6 (𝒫 𝐼 ∩ Fin) ⊆ 𝒫 𝐼
1110sseli 3945 . . . . 5 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣 ∈ 𝒫 𝐼)
1211elpwid 4575 . . . 4 (𝑣 ∈ (𝒫 𝐼 ∩ Fin) → 𝑣𝐼)
13 nffvmpt1 6872 . . . . . . . 8 𝑦((𝑦𝐼𝐶)‘𝑧)
14 nfcv 2892 . . . . . . . 8 𝑧((𝑦𝐼𝐶)‘𝑦)
15 fveq2 6861 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑦𝐼𝐶)‘𝑧) = ((𝑦𝐼𝐶)‘𝑦))
1613, 14, 15cbviin 5004 . . . . . . 7 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦)
17 simplr 768 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝑦𝐼)
18 simpll 766 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐵𝑉)
19 simpr 484 . . . . . . . . . . . . . 14 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶𝐵)
2018, 19ssexd 5282 . . . . . . . . . . . . 13 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → 𝐶 ∈ V)
215fvmpt2 6982 . . . . . . . . . . . . 13 ((𝑦𝐼𝐶 ∈ V) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2217, 20, 21syl2anc 584 . . . . . . . . . . . 12 (((𝐵𝑉𝑦𝐼) ∧ 𝐶𝐵) → ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
2322ex 412 . . . . . . . . . . 11 ((𝐵𝑉𝑦𝐼) → (𝐶𝐵 → ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2423ralimdva 3146 . . . . . . . . . 10 (𝐵𝑉 → (∀𝑦𝐼 𝐶𝐵 → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2524imp 406 . . . . . . . . 9 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → ∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
26 ssralv 4018 . . . . . . . . 9 (𝑣𝐼 → (∀𝑦𝐼 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶))
2725, 26mpan9 506 . . . . . . . 8 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → ∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶)
28 iineq2 4979 . . . . . . . 8 (∀𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝐶 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
2927, 28syl 17 . . . . . . 7 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑦𝑣 ((𝑦𝐼𝐶)‘𝑦) = 𝑦𝑣 𝐶)
3016, 29eqtrid 2777 . . . . . 6 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧) = 𝑦𝑣 𝐶)
3130ineq2d 4186 . . . . 5 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) = (𝐵 𝑦𝑣 𝐶))
3231eqeq2d 2741 . . . 4 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣𝐼) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3312, 32sylan2 593 . . 3 (((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) ∧ 𝑣 ∈ (𝒫 𝐼 ∩ Fin)) → (𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ 𝐴 = (𝐵 𝑦𝑣 𝐶)))
3433rexbidva 3156 . 2 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑧𝑣 ((𝑦𝐼𝐶)‘𝑧)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
359, 34bitrd 279 1 ((𝐵𝑉 ∧ ∀𝑦𝐼 𝐶𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦𝐼𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 𝑦𝑣 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592   ciin 4959  cmpt 5191  ran crn 5642  wf 6510  cfv 6514  Fincfn 8921  ficfi 9368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369
This theorem is referenced by:  cmpfiiin  42692
  Copyright terms: Public domain W3C validator