MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2 Structured version   Visualization version   GIF version

Theorem iuneq2 4943
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 4942 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
2 ss2iun 4942 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐵)
31, 2anim12i 613 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
4 eqss 3936 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 3092 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 3095 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 274 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3936 . 2 ( 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 ↔ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
93, 7, 83imtr4i 292 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wral 3064  wss 3887   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iun 4926
This theorem is referenced by:  iuneq2i  4945  iuneq2dv  4948  iunxdif3  5024  oa0r  8368  om0r  8369  om1r  8374  oe1m  8376  oaass  8392  oarec  8393  omass  8411  oeoalem  8427  oeoelem  8429  cardiun  9740  kmlem11  9916  iuncld  22196  comppfsc  22683  istotbnd3  35929  sstotbnd  35933  heibor  35979  iuneq12f  36321  cnvtrclfv  41332  iuneq2df  42594
  Copyright terms: Public domain W3C validator