|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iuneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| iuneq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ss2iun 5009 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | ss2iun 5009 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | 
| 4 | eqss 3998 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
| 5 | 4 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | 
| 6 | r19.26 3110 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | 
| 8 | eqss 3998 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 9 | 3, 7, 8 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3060 ⊆ wss 3950 ∪ ciun 4990 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-v 3481 df-ss 3967 df-iun 4992 | 
| This theorem is referenced by: iuneq2i 5012 iuneq2dv 5015 iunxdif3 5094 oa0r 8577 om0r 8578 om1r 8582 oe1m 8584 oaass 8600 oarec 8601 omass 8619 oeoalem 8635 oeoelem 8637 cardiun 10023 kmlem11 10202 iuncld 23054 comppfsc 23541 istotbnd3 37779 sstotbnd 37783 heibor 37829 iuneq12f 38171 cnvtrclfv 43742 iuneq2df 45057 | 
| Copyright terms: Public domain | W3C validator |