MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuneq2 Structured version   Visualization version   GIF version

Theorem iuneq2 4959
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 4958 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
2 ss2iun 4958 . . 3 (∀𝑥𝐴 𝐶𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐵)
31, 2anim12i 613 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
4 eqss 3945 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 3078 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 3092 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 275 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3945 . 2 ( 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶 ↔ ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑥𝐴 𝐵))
93, 7, 83imtr4i 292 1 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wral 3047  wss 3897   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-iun 4941
This theorem is referenced by:  iuneq2i  4961  iuneq2dv  4964  iunxdif3  5041  oa0r  8453  om0r  8454  om1r  8458  oe1m  8460  oaass  8476  oarec  8477  omass  8495  oeoalem  8511  oeoelem  8513  cardiun  9875  kmlem11  10052  iuncld  22960  comppfsc  23447  istotbnd3  37821  sstotbnd  37825  heibor  37871  iuneq12f  38213  cnvtrclfv  43827  iuneq2df  45154
  Copyright terms: Public domain W3C validator