| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2iun 4977 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | ss2iun 4977 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 4 | eqss 3965 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
| 5 | 4 | ralbii 3076 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
| 6 | r19.26 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
| 8 | eqss 3965 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 9 | 3, 7, 8 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∀wral 3045 ⊆ wss 3917 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iuneq2i 4980 iuneq2dv 4983 iunxdif3 5062 oa0r 8505 om0r 8506 om1r 8510 oe1m 8512 oaass 8528 oarec 8529 omass 8547 oeoalem 8563 oeoelem 8565 cardiun 9942 kmlem11 10121 iuncld 22939 comppfsc 23426 istotbnd3 37772 sstotbnd 37776 heibor 37822 iuneq12f 38164 cnvtrclfv 43720 iuneq2df 45048 |
| Copyright terms: Public domain | W3C validator |