MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Structured version   Visualization version   GIF version

Theorem iincld 22954
Description: The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2731 . . . . . . . 8 𝐽 = 𝐽
21cldss 22944 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
3 dfss4 4216 . . . . . . 7 (𝐵 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
42, 3sylib 218 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
54ralimi 3069 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
6 iineq2 4960 . . . . 5 (∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
75, 6syl 17 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
87adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
9 iindif2 5023 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
109adantr 480 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
118, 10eqtr3d 2768 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
12 r19.2z 4442 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
13 cldrcl 22941 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1413rexlimivw 3129 . . . 4 (∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1512, 14syl 17 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
161cldopn 22946 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
1716ralimi 3069 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
1817adantl 481 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
19 iunopn 22813 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
2015, 18, 19syl2anc 584 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
211opncld 22948 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2215, 20, 21syl2anc 584 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2311, 22eqeltrd 2831 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  wss 3897  c0 4280   cuni 4856   ciun 4939   ciin 4940  cfv 6481  Topctop 22808  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-top 22809  df-cld 22934
This theorem is referenced by:  intcld  22955  riincld  22959  hauscmplem  23321  ubthlem1  30850
  Copyright terms: Public domain W3C validator