MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Structured version   Visualization version   GIF version

Theorem iincld 21354
Description: The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2778 . . . . . . . 8 𝐽 = 𝐽
21cldss 21344 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
3 dfss4 4124 . . . . . . 7 (𝐵 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
42, 3sylib 210 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
54ralimi 3110 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
6 iineq2 4812 . . . . 5 (∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
75, 6syl 17 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
87adantl 474 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
9 iindif2 4866 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
109adantr 473 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
118, 10eqtr3d 2816 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
12 r19.2z 4324 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
13 cldrcl 21341 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1413rexlimivw 3227 . . . 4 (∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1512, 14syl 17 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
161cldopn 21346 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
1716ralimi 3110 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
1817adantl 474 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
19 iunopn 21213 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
2015, 18, 19syl2anc 576 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
211opncld 21348 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2215, 20, 21syl2anc 576 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2311, 22eqeltrd 2866 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  wrex 3089  cdif 3828  wss 3831  c0 4180   cuni 4713   ciun 4793   ciin 4794  cfv 6190  Topctop 21208  Clsdccld 21331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-iota 6154  df-fun 6192  df-fn 6193  df-fv 6198  df-top 21209  df-cld 21334
This theorem is referenced by:  intcld  21355  riincld  21359  hauscmplem  21721  ubthlem1  28428
  Copyright terms: Public domain W3C validator