MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Structured version   Visualization version   GIF version

Theorem iincld 22765
Description: The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
21cldss 22755 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
3 dfss4 4259 . . . . . . 7 (𝐵 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
42, 3sylib 217 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
54ralimi 3081 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
6 iineq2 5018 . . . . 5 (∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
75, 6syl 17 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
87adantl 480 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
9 iindif2 5081 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
109adantr 479 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
118, 10eqtr3d 2772 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
12 r19.2z 4495 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
13 cldrcl 22752 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1413rexlimivw 3149 . . . 4 (∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1512, 14syl 17 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
161cldopn 22757 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
1716ralimi 3081 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
1817adantl 480 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
19 iunopn 22622 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
2015, 18, 19syl2anc 582 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
211opncld 22759 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2215, 20, 21syl2anc 582 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2311, 22eqeltrd 2831 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  cdif 3946  wss 3949  c0 4323   cuni 4909   ciun 4998   ciin 4999  cfv 6544  Topctop 22617  Clsdccld 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-top 22618  df-cld 22745
This theorem is referenced by:  intcld  22766  riincld  22770  hauscmplem  23132  ubthlem1  30388
  Copyright terms: Public domain W3C validator