| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iineq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.) |
| Ref | Expression |
|---|---|
| iineq2d.1 | ⊢ Ⅎ𝑥𝜑 |
| iineq2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iineq2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | iineq2d.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 = 𝐶)) |
| 4 | 1, 3 | ralrimi 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 5 | iineq2 5011 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3060 ∩ ciin 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-iin 4993 |
| This theorem is referenced by: pmapglbx 39772 saliinclf 46346 smflimmpt 46830 smfsupmpt 46835 smfinfmpt 46839 smflimsuplem4 46843 smflimsupmpt 46849 smfliminfmpt 46852 |
| Copyright terms: Public domain | W3C validator |