MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2d Structured version   Visualization version   GIF version

Theorem iineq2d 5038
Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1 𝑥𝜑
iineq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2d (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3 𝑥𝜑
2 iineq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 3263 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 iineq2 5035 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-iin 5018
This theorem is referenced by:  pmapglbx  39726  saliinclf  46247  smflimmpt  46731  smfsupmpt  46736  smfinfmpt  46740  smflimsuplem4  46744  smflimsupmpt  46750  smfliminfmpt  46753
  Copyright terms: Public domain W3C validator