![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iineq2d | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.) |
Ref | Expression |
---|---|
iineq2d.1 | ⊢ Ⅎ𝑥𝜑 |
iineq2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iineq2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iineq2d.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 = 𝐶)) |
4 | 1, 3 | ralrimi 3246 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
5 | iineq2 5008 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3053 ∩ ciin 4989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-iin 4991 |
This theorem is referenced by: iineq2dv 5013 pmapglbx 39134 saliinclf 45552 smflimmpt 46036 smfsupmpt 46041 smfinfmpt 46045 smflimsuplem4 46049 smflimsupmpt 46055 smfliminfmpt 46058 |
Copyright terms: Public domain | W3C validator |