Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibintclN Structured version   Visualization version   GIF version

Theorem dibintclN 39108
Description: The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibintcl.h 𝐻 = (LHyp‘𝐾)
dibintcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibintclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)

Proof of Theorem dibintclN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dibintcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 dibintcl.i . . . . . . . 8 𝐼 = ((DIsoB‘𝐾)‘𝑊)
31, 2dibf11N 39102 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
43adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
5 f1ofn 6701 . . . . . 6 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼 Fn dom 𝐼)
64, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
7 cnvimass 5978 . . . . 5 (𝐼𝑆) ⊆ dom 𝐼
8 fnssres 6539 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (𝐼𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
96, 7, 8sylancl 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
10 fniinfv 6828 . . . 4 ((𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
119, 10syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
12 df-ima 5593 . . . . 5 (𝐼 “ (𝐼𝑆)) = ran (𝐼 ↾ (𝐼𝑆))
13 f1ofo 6707 . . . . . . . 8 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼onto→ran 𝐼)
143, 13syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼onto→ran 𝐼)
1514adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼onto→ran 𝐼)
16 simprl 767 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼)
17 foimacnv 6717 . . . . . 6 ((𝐼:dom 𝐼onto→ran 𝐼𝑆 ⊆ ran 𝐼) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1815, 16, 17syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1912, 18eqtr3id 2793 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2019inteqd 4881 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2111, 20eqtrd 2778 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑆)
22 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
237a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ dom 𝐼)
24 simprr 769 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
25 n0 4277 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
2624, 25sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦𝑆)
2716sselda 3917 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦 ∈ ran 𝐼)
283ad2antrr 722 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
2928, 5syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼 Fn dom 𝐼)
30 fvelrnb 6812 . . . . . . . . 9 (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3129, 30syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3227, 31mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦)
33 f1ofun 6702 . . . . . . . . . . . . . . . 16 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
343, 33syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
3534adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → Fun 𝐼)
36 fvimacnv 6912 . . . . . . . . . . . . . 14 ((Fun 𝐼𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
3735, 36sylan 579 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
38 ne0i 4265 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼𝑆) → (𝐼𝑆) ≠ ∅)
3937, 38syl6bi 252 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅))
4039ex 412 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅)))
41 eleq1 2826 . . . . . . . . . . . . 13 ((𝐼𝑥) = 𝑦 → ((𝐼𝑥) ∈ 𝑆𝑦𝑆))
4241biimprd 247 . . . . . . . . . . . 12 ((𝐼𝑥) = 𝑦 → (𝑦𝑆 → (𝐼𝑥) ∈ 𝑆))
4342imim1d 82 . . . . . . . . . . 11 ((𝐼𝑥) = 𝑦 → (((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅) → (𝑦𝑆 → (𝐼𝑆) ≠ ∅)))
4440, 43syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((𝐼𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦𝑆 → (𝐼𝑆) ≠ ∅))))
4544com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑦𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))))
4645imp 406 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅)))
4746rexlimdv 3211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))
4832, 47mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝐼𝑆) ≠ ∅)
4926, 48exlimddv 1939 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ≠ ∅)
50 eqid 2738 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
5150, 1, 2dibglbN 39107 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑆) ⊆ dom 𝐼 ∧ (𝐼𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
5222, 23, 49, 51syl12anc 833 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
53 fvres 6775 . . . . 5 (𝑦 ∈ (𝐼𝑆) → ((𝐼 ↾ (𝐼𝑆))‘𝑦) = (𝐼𝑦))
5453iineq2i 4943 . . . 4 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦)
5552, 54eqtr4di 2797 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦))
56 hlclat 37299 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
5756ad2antrr 722 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
58 eqid 2738 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2738 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6058, 59, 1, 2dibdmN 39098 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
61 ssrab2 4009 . . . . . . . . 9 {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
6260, 61eqsstrdi 3971 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 ⊆ (Base‘𝐾))
6362adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 ⊆ (Base‘𝐾))
647, 63sstrid 3928 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
6558, 50clatglbcl 18138 . . . . . 6 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
6657, 64, 65syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
67 n0 4277 . . . . . . 7 ((𝐼𝑆) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐼𝑆))
6849, 67sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ (𝐼𝑆))
69 hllat 37304 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7069ad3antrrr 726 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ Lat)
7166adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
7264sselda 3917 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (Base‘𝐾))
7358, 1lhpbase 37939 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7473ad3antlr 727 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑊 ∈ (Base‘𝐾))
7556ad3antrrr 726 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ CLat)
7660adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
777, 76sseqtrid 3969 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
7877, 61sstrdi 3929 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
7978adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝐼𝑆) ⊆ (Base‘𝐾))
80 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (𝐼𝑆))
8158, 59, 50clatglble 18150 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
8275, 79, 80, 81syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
837sseli 3913 . . . . . . . . . 10 (𝑦 ∈ (𝐼𝑆) → 𝑦 ∈ dom 𝐼)
8483adantl 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ dom 𝐼)
8558, 59, 1, 2dibeldmN 39099 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8685ad2antrr 722 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8784, 86mpbid 231 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))
8887simprd 495 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦(le‘𝐾)𝑊)
8958, 59, 70, 71, 72, 74, 82, 88lattrd 18079 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9068, 89exlimddv 1939 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9158, 59, 1, 2dibeldmN 39099 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9291adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9366, 90, 92mpbir2and 709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼)
941, 2dibclN 39103 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9593, 94syldan 590 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9655, 95eqeltrrd 2840 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) ∈ ran 𝐼)
9721, 96eqeltrrd 2840 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  {crab 3067  wss 3883  c0 4253   cint 4876   ciin 4922   class class class wbr 5070  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  lecple 16895  glbcglb 17943  Latclat 18064  CLatccla 18131  HLchlt 37291  LHypclh 37925  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970  df-dib 39080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator