Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibintclN Structured version   Visualization version   GIF version

Theorem dibintclN 38804
Description: The intersection of partial isomorphism B closed subspaces is a closed subspace. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibintcl.h 𝐻 = (LHyp‘𝐾)
dibintcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibintclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)

Proof of Theorem dibintclN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dibintcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 dibintcl.i . . . . . . . 8 𝐼 = ((DIsoB‘𝐾)‘𝑊)
31, 2dibf11N 38798 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
43adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
5 f1ofn 6619 . . . . . 6 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼 Fn dom 𝐼)
64, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
7 cnvimass 5923 . . . . 5 (𝐼𝑆) ⊆ dom 𝐼
8 fnssres 6459 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (𝐼𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
96, 7, 8sylancl 589 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
10 fniinfv 6746 . . . 4 ((𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
119, 10syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
12 df-ima 5538 . . . . 5 (𝐼 “ (𝐼𝑆)) = ran (𝐼 ↾ (𝐼𝑆))
13 f1ofo 6625 . . . . . . . 8 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼onto→ran 𝐼)
143, 13syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼onto→ran 𝐼)
1514adantr 484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼onto→ran 𝐼)
16 simprl 771 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼)
17 foimacnv 6635 . . . . . 6 ((𝐼:dom 𝐼onto→ran 𝐼𝑆 ⊆ ran 𝐼) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1815, 16, 17syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1912, 18eqtr3id 2787 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2019inteqd 4841 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2111, 20eqtrd 2773 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑆)
22 simpl 486 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
237a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ dom 𝐼)
24 simprr 773 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
25 n0 4235 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
2624, 25sylib 221 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦𝑆)
2716sselda 3877 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦 ∈ ran 𝐼)
283ad2antrr 726 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
2928, 5syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼 Fn dom 𝐼)
30 fvelrnb 6730 . . . . . . . . 9 (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3129, 30syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3227, 31mpbid 235 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦)
33 f1ofun 6620 . . . . . . . . . . . . . . . 16 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
343, 33syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
3534adantr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → Fun 𝐼)
36 fvimacnv 6830 . . . . . . . . . . . . . 14 ((Fun 𝐼𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
3735, 36sylan 583 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
38 ne0i 4223 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼𝑆) → (𝐼𝑆) ≠ ∅)
3937, 38syl6bi 256 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅))
4039ex 416 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅)))
41 eleq1 2820 . . . . . . . . . . . . 13 ((𝐼𝑥) = 𝑦 → ((𝐼𝑥) ∈ 𝑆𝑦𝑆))
4241biimprd 251 . . . . . . . . . . . 12 ((𝐼𝑥) = 𝑦 → (𝑦𝑆 → (𝐼𝑥) ∈ 𝑆))
4342imim1d 82 . . . . . . . . . . 11 ((𝐼𝑥) = 𝑦 → (((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅) → (𝑦𝑆 → (𝐼𝑆) ≠ ∅)))
4440, 43syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((𝐼𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦𝑆 → (𝐼𝑆) ≠ ∅))))
4544com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑦𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))))
4645imp 410 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅)))
4746rexlimdv 3193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))
4832, 47mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝐼𝑆) ≠ ∅)
4926, 48exlimddv 1942 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ≠ ∅)
50 eqid 2738 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
5150, 1, 2dibglbN 38803 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑆) ⊆ dom 𝐼 ∧ (𝐼𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
5222, 23, 49, 51syl12anc 836 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
53 fvres 6693 . . . . 5 (𝑦 ∈ (𝐼𝑆) → ((𝐼 ↾ (𝐼𝑆))‘𝑦) = (𝐼𝑦))
5453iineq2i 4903 . . . 4 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦)
5552, 54eqtr4di 2791 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦))
56 hlclat 36995 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
5756ad2antrr 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
58 eqid 2738 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2738 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6058, 59, 1, 2dibdmN 38794 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
61 ssrab2 3969 . . . . . . . . 9 {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
6260, 61eqsstrdi 3931 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 ⊆ (Base‘𝐾))
6362adantr 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 ⊆ (Base‘𝐾))
647, 63sstrid 3888 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
6558, 50clatglbcl 17840 . . . . . 6 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
6657, 64, 65syl2anc 587 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
67 n0 4235 . . . . . . 7 ((𝐼𝑆) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐼𝑆))
6849, 67sylib 221 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ (𝐼𝑆))
69 hllat 37000 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7069ad3antrrr 730 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ Lat)
7166adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
7264sselda 3877 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (Base‘𝐾))
7358, 1lhpbase 37635 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7473ad3antlr 731 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑊 ∈ (Base‘𝐾))
7556ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ CLat)
7660adantr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
777, 76sseqtrid 3929 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
7877, 61sstrdi 3889 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
7978adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝐼𝑆) ⊆ (Base‘𝐾))
80 simpr 488 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (𝐼𝑆))
8158, 59, 50clatglble 17851 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
8275, 79, 80, 81syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
837sseli 3873 . . . . . . . . . 10 (𝑦 ∈ (𝐼𝑆) → 𝑦 ∈ dom 𝐼)
8483adantl 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ dom 𝐼)
8558, 59, 1, 2dibeldmN 38795 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8685ad2antrr 726 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8784, 86mpbid 235 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))
8887simprd 499 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦(le‘𝐾)𝑊)
8958, 59, 70, 71, 72, 74, 82, 88lattrd 17784 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9068, 89exlimddv 1942 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9158, 59, 1, 2dibeldmN 38795 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9291adantr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9366, 90, 92mpbir2and 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼)
941, 2dibclN 38799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9593, 94syldan 594 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9655, 95eqeltrrd 2834 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) ∈ ran 𝐼)
9721, 96eqeltrrd 2834 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  wne 2934  wrex 3054  {crab 3057  wss 3843  c0 4211   cint 4836   ciin 4882   class class class wbr 5030  ccnv 5524  dom cdm 5525  ran crn 5526  cres 5527  cima 5528  Fun wfun 6333   Fn wfn 6334  ontowfo 6337  1-1-ontowf1o 6338  cfv 6339  Basecbs 16586  lecple 16675  glbcglb 17669  Latclat 17771  CLatccla 17833  HLchlt 36987  LHypclh 37621  DIsoBcdib 38775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-riotaBAD 36590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-undef 7968  df-map 8439  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-oposet 36813  df-ol 36815  df-oml 36816  df-covers 36903  df-ats 36904  df-atl 36935  df-cvlat 36959  df-hlat 36988  df-llines 37135  df-lplanes 37136  df-lvols 37137  df-lines 37138  df-psubsp 37140  df-pmap 37141  df-padd 37433  df-lhyp 37625  df-laut 37626  df-ldil 37741  df-ltrn 37742  df-trl 37796  df-disoa 38666  df-dib 38776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator