Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaintclN Structured version   Visualization version   GIF version

Theorem diaintclN 39510
Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaintcl.h 𝐻 = (LHyp‘𝐾)
diaintcl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaintclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)

Proof of Theorem diaintclN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaintcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 diaintcl.i . . . . . . . 8 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 39501 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
43adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
5 f1ofn 6783 . . . . . 6 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼 Fn dom 𝐼)
64, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
7 cnvimass 6032 . . . . 5 (𝐼𝑆) ⊆ dom 𝐼
8 fnssres 6622 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (𝐼𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
96, 7, 8sylancl 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
10 fniinfv 6917 . . . 4 ((𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
119, 10syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
12 df-ima 5645 . . . . 5 (𝐼 “ (𝐼𝑆)) = ran (𝐼 ↾ (𝐼𝑆))
13 f1ofo 6789 . . . . . . . 8 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼onto→ran 𝐼)
143, 13syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼onto→ran 𝐼)
1514adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼onto→ran 𝐼)
16 simprl 769 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼)
17 foimacnv 6799 . . . . . 6 ((𝐼:dom 𝐼onto→ran 𝐼𝑆 ⊆ ran 𝐼) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1815, 16, 17syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1912, 18eqtr3id 2790 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2019inteqd 4911 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2111, 20eqtrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑆)
22 simpl 483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
237a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ dom 𝐼)
24 simprr 771 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
25 n0 4305 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
2624, 25sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦𝑆)
2716sselda 3943 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦 ∈ ran 𝐼)
283ad2antrr 724 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
2928, 5syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼 Fn dom 𝐼)
30 fvelrnb 6901 . . . . . . . . 9 (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3129, 30syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3227, 31mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦)
33 f1ofun 6784 . . . . . . . . . . . . . . . 16 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
343, 33syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
3534adantr 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → Fun 𝐼)
36 fvimacnv 7001 . . . . . . . . . . . . . 14 ((Fun 𝐼𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
3735, 36sylan 580 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
38 ne0i 4293 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼𝑆) → (𝐼𝑆) ≠ ∅)
3937, 38syl6bi 252 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅))
4039ex 413 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅)))
41 eleq1 2825 . . . . . . . . . . . . 13 ((𝐼𝑥) = 𝑦 → ((𝐼𝑥) ∈ 𝑆𝑦𝑆))
4241biimprd 247 . . . . . . . . . . . 12 ((𝐼𝑥) = 𝑦 → (𝑦𝑆 → (𝐼𝑥) ∈ 𝑆))
4342imim1d 82 . . . . . . . . . . 11 ((𝐼𝑥) = 𝑦 → (((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅) → (𝑦𝑆 → (𝐼𝑆) ≠ ∅)))
4440, 43syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((𝐼𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦𝑆 → (𝐼𝑆) ≠ ∅))))
4544com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑦𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))))
4645imp 407 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅)))
4746rexlimdv 3149 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))
4832, 47mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝐼𝑆) ≠ ∅)
4926, 48exlimddv 1938 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ≠ ∅)
50 eqid 2736 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
5150, 1, 2diaglbN 39507 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑆) ⊆ dom 𝐼 ∧ (𝐼𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
5222, 23, 49, 51syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
53 fvres 6859 . . . . 5 (𝑦 ∈ (𝐼𝑆) → ((𝐼 ↾ (𝐼𝑆))‘𝑦) = (𝐼𝑦))
5453iineq2i 4975 . . . 4 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦)
5552, 54eqtr4di 2794 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦))
56 hlclat 37809 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
5756ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
58 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2736 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6058, 59, 1, 2diadm 39487 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
61 ssrab2 4036 . . . . . . . . 9 {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
6260, 61eqsstrdi 3997 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 ⊆ (Base‘𝐾))
6362adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 ⊆ (Base‘𝐾))
647, 63sstrid 3954 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
6558, 50clatglbcl 18391 . . . . . 6 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
6657, 64, 65syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
67 n0 4305 . . . . . . 7 ((𝐼𝑆) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐼𝑆))
6849, 67sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ (𝐼𝑆))
69 hllat 37814 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7069ad3antrrr 728 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ Lat)
7166adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
7264sselda 3943 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (Base‘𝐾))
7358, 1lhpbase 38450 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7473ad3antlr 729 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑊 ∈ (Base‘𝐾))
7556ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ CLat)
7660adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
777, 76sseqtrid 3995 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
7877, 61sstrdi 3955 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
7978adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝐼𝑆) ⊆ (Base‘𝐾))
80 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (𝐼𝑆))
8158, 59, 50clatglble 18403 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
8275, 79, 80, 81syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
837sseli 3939 . . . . . . . . . 10 (𝑦 ∈ (𝐼𝑆) → 𝑦 ∈ dom 𝐼)
8483adantl 482 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ dom 𝐼)
8558, 59, 1, 2diaeldm 39488 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8685ad2antrr 724 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8784, 86mpbid 231 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))
8887simprd 496 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦(le‘𝐾)𝑊)
8958, 59, 70, 71, 72, 74, 82, 88lattrd 18332 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9068, 89exlimddv 1938 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9158, 59, 1, 2diaeldm 39488 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9291adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9366, 90, 92mpbir2and 711 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼)
941, 2diaclN 39502 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9593, 94syldan 591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9655, 95eqeltrrd 2839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) ∈ ran 𝐼)
9721, 96eqeltrrd 2839 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2942  wrex 3072  {crab 3406  wss 3909  c0 4281   cint 4906   ciin 4954   class class class wbr 5104  ccnv 5631  dom cdm 5632  ran crn 5633  cres 5634  cima 5635  Fun wfun 6488   Fn wfn 6489  ontowfo 6492  1-1-ontowf1o 6493  cfv 6494  Basecbs 17080  lecple 17137  glbcglb 18196  Latclat 18317  CLatccla 18384  HLchlt 37801  LHypclh 38436  DIsoAcdia 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-riotaBAD 37404
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7918  df-2nd 7919  df-undef 8201  df-map 8764  df-proset 18181  df-poset 18199  df-plt 18216  df-lub 18232  df-glb 18233  df-join 18234  df-meet 18235  df-p0 18311  df-p1 18312  df-lat 18318  df-clat 18385  df-oposet 37627  df-ol 37629  df-oml 37630  df-covers 37717  df-ats 37718  df-atl 37749  df-cvlat 37773  df-hlat 37802  df-llines 37950  df-lplanes 37951  df-lvols 37952  df-lines 37953  df-psubsp 37955  df-pmap 37956  df-padd 38248  df-lhyp 38440  df-laut 38441  df-ldil 38556  df-ltrn 38557  df-trl 38611  df-disoa 39481
This theorem is referenced by:  docaclN  39576
  Copyright terms: Public domain W3C validator