Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaintclN Structured version   Visualization version   GIF version

Theorem diaintclN 39917
Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaintcl.h 𝐻 = (LHypβ€˜πΎ)
diaintcl.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diaintclN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)

Proof of Theorem diaintclN
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaintcl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
2 diaintcl.i . . . . . . . 8 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
31, 2diaf11N 39908 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
43adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
5 f1ofn 6831 . . . . . 6 (𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼 β†’ 𝐼 Fn dom 𝐼)
64, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn dom 𝐼)
7 cnvimass 6077 . . . . 5 (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼
8 fnssres 6670 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
96, 7, 8sylancl 586 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
10 fniinfv 6966 . . . 4 ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
119, 10syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
12 df-ima 5688 . . . . 5 (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆))
13 f1ofo 6837 . . . . . . . 8 (𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼 β†’ 𝐼:dom 𝐼–ontoβ†’ran 𝐼)
143, 13syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–ontoβ†’ran 𝐼)
1514adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼:dom 𝐼–ontoβ†’ran 𝐼)
16 simprl 769 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 βŠ† ran 𝐼)
17 foimacnv 6847 . . . . . 6 ((𝐼:dom 𝐼–ontoβ†’ran 𝐼 ∧ 𝑆 βŠ† ran 𝐼) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
1815, 16, 17syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
1912, 18eqtr3id 2786 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = 𝑆)
2019inteqd 4954 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = ∩ 𝑆)
2111, 20eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑆)
22 simpl 483 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
237a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼)
24 simprr 771 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 β‰  βˆ…)
25 n0 4345 . . . . . . 7 (𝑆 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
2624, 25sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
2716sselda 3981 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ ran 𝐼)
283ad2antrr 724 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
2928, 5syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝐼 Fn dom 𝐼)
30 fvelrnb 6949 . . . . . . . . 9 (𝐼 Fn dom 𝐼 β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3129, 30syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3227, 31mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦)
33 f1ofun 6832 . . . . . . . . . . . . . . . 16 (𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼 β†’ Fun 𝐼)
343, 33syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Fun 𝐼)
3534adantr 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ Fun 𝐼)
36 fvimacnv 7051 . . . . . . . . . . . . . 14 ((Fun 𝐼 ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
3735, 36sylan 580 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
38 ne0i 4333 . . . . . . . . . . . . 13 (π‘₯ ∈ (◑𝐼 β€œ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
3937, 38syl6bi 252 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
4039ex 413 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
41 eleq1 2821 . . . . . . . . . . . . 13 ((πΌβ€˜π‘₯) = 𝑦 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆))
4241biimprd 247 . . . . . . . . . . . 12 ((πΌβ€˜π‘₯) = 𝑦 β†’ (𝑦 ∈ 𝑆 β†’ (πΌβ€˜π‘₯) ∈ 𝑆))
4342imim1d 82 . . . . . . . . . . 11 ((πΌβ€˜π‘₯) = 𝑦 β†’ (((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…) β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
4440, 43syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (π‘₯ ∈ dom 𝐼 β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4544com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝑦 ∈ 𝑆 β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4645imp 407 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
4746rexlimdv 3153 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
4832, 47mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
4926, 48exlimddv 1938 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
50 eqid 2732 . . . . . 6 (glbβ€˜πΎ) = (glbβ€˜πΎ)
5150, 1, 2diaglbN 39914 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((◑𝐼 β€œ 𝑆) βŠ† dom 𝐼 ∧ (◑𝐼 β€œ 𝑆) β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
5222, 23, 49, 51syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
53 fvres 6907 . . . . 5 (𝑦 ∈ (◑𝐼 β€œ 𝑆) β†’ ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = (πΌβ€˜π‘¦))
5453iineq2i 5018 . . . 4 ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦)
5552, 54eqtr4di 2790 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦))
56 hlclat 38216 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
5756ad2antrr 724 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐾 ∈ CLat)
58 eqid 2732 . . . . . . . . . 10 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
59 eqid 2732 . . . . . . . . . 10 (leβ€˜πΎ) = (leβ€˜πΎ)
6058, 59, 1, 2diadm 39894 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š})
61 ssrab2 4076 . . . . . . . . 9 {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š} βŠ† (Baseβ€˜πΎ)
6260, 61eqsstrdi 4035 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 βŠ† (Baseβ€˜πΎ))
6362adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ dom 𝐼 βŠ† (Baseβ€˜πΎ))
647, 63sstrid 3992 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ))
6558, 50clatglbcl 18454 . . . . . 6 ((𝐾 ∈ CLat ∧ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
6657, 64, 65syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
67 n0 4345 . . . . . . 7 ((◑𝐼 β€œ 𝑆) β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ (◑𝐼 β€œ 𝑆))
6849, 67sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ βˆƒπ‘¦ 𝑦 ∈ (◑𝐼 β€œ 𝑆))
69 hllat 38221 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
7069ad3antrrr 728 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝐾 ∈ Lat)
7166adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
7264sselda 3981 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝑦 ∈ (Baseβ€˜πΎ))
7358, 1lhpbase 38857 . . . . . . . 8 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
7473ad3antlr 729 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
7556ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝐾 ∈ CLat)
7660adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ dom 𝐼 = {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š})
777, 76sseqtrid 4033 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š})
7877, 61sstrdi 3993 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ))
7978adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ))
80 simpr 485 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝑦 ∈ (◑𝐼 β€œ 𝑆))
8158, 59, 50clatglble 18466 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)𝑦)
8275, 79, 80, 81syl3anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)𝑦)
837sseli 3977 . . . . . . . . . 10 (𝑦 ∈ (◑𝐼 β€œ 𝑆) β†’ 𝑦 ∈ dom 𝐼)
8483adantl 482 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝑦 ∈ dom 𝐼)
8558, 59, 1, 2diaeldm 39895 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)))
8685ad2antrr 724 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)))
8784, 86mpbid 231 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š))
8887simprd 496 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ 𝑦(leβ€˜πΎ)π‘Š)
8958, 59, 70, 71, 72, 74, 82, 88lattrd 18395 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ (◑𝐼 β€œ 𝑆)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)π‘Š)
9068, 89exlimddv 1938 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)π‘Š)
9158, 59, 1, 2diaeldm 39895 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ dom 𝐼 ↔ (((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)π‘Š)))
9291adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ dom 𝐼 ↔ (((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ) ∧ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))(leβ€˜πΎ)π‘Š)))
9366, 90, 92mpbir2and 711 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ dom 𝐼)
941, 2diaclN 39909 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ dom 𝐼) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
9593, 94syldan 591 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
9655, 95eqeltrrd 2834 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) ∈ ran 𝐼)
9721, 96eqeltrrd 2834 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  {crab 3432   βŠ† wss 3947  βˆ…c0 4321  βˆ© cint 4949  βˆ© ciin 4997   class class class wbr 5147  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534   Fn wfn 6535  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  Basecbs 17140  lecple 17200  glbcglb 18259  Latclat 18380  CLatccla 18447  HLchlt 38208  LHypclh 38843  DIsoAcdia 39887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-disoa 39888
This theorem is referenced by:  docaclN  39983
  Copyright terms: Public domain W3C validator