Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaintclN Structured version   Visualization version   GIF version

Theorem diaintclN 37017
Description: The intersection of partial isomorphism A closed subspaces is a closed subspace. (Contributed by NM, 3-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaintcl.h 𝐻 = (LHyp‘𝐾)
diaintcl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diaintclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)

Proof of Theorem diaintclN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diaintcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 diaintcl.i . . . . . . . 8 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 37008 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
43adantr 472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
5 f1ofn 6323 . . . . . 6 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼 Fn dom 𝐼)
64, 5syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
7 cnvimass 5669 . . . . 5 (𝐼𝑆) ⊆ dom 𝐼
8 fnssres 6184 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (𝐼𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
96, 7, 8sylancl 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
10 fniinfv 6448 . . . 4 ((𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
119, 10syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
12 df-ima 5292 . . . . 5 (𝐼 “ (𝐼𝑆)) = ran (𝐼 ↾ (𝐼𝑆))
13 f1ofo 6329 . . . . . . . 8 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼onto→ran 𝐼)
143, 13syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼onto→ran 𝐼)
1514adantr 472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:dom 𝐼onto→ran 𝐼)
16 simprl 787 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼)
17 foimacnv 6339 . . . . . 6 ((𝐼:dom 𝐼onto→ran 𝐼𝑆 ⊆ ran 𝐼) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1815, 16, 17syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 “ (𝐼𝑆)) = 𝑆)
1912, 18syl5eqr 2813 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2019inteqd 4640 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2111, 20eqtrd 2799 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑆)
22 simpl 474 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
237a1i 11 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ dom 𝐼)
24 simprr 789 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
25 n0 4097 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
2624, 25sylib 209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦𝑆)
2716sselda 3763 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦 ∈ ran 𝐼)
283ad2antrr 717 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
2928, 5syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼 Fn dom 𝐼)
30 fvelrnb 6434 . . . . . . . . 9 (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3129, 30syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3227, 31mpbid 223 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦)
33 f1ofun 6324 . . . . . . . . . . . . . . . 16 (𝐼:dom 𝐼1-1-onto→ran 𝐼 → Fun 𝐼)
343, 33syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
3534adantr 472 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → Fun 𝐼)
36 fvimacnv 6524 . . . . . . . . . . . . . 14 ((Fun 𝐼𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
3735, 36sylan 575 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
38 ne0i 4087 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼𝑆) → (𝐼𝑆) ≠ ∅)
3937, 38syl6bi 244 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅))
4039ex 401 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅)))
41 eleq1 2832 . . . . . . . . . . . . 13 ((𝐼𝑥) = 𝑦 → ((𝐼𝑥) ∈ 𝑆𝑦𝑆))
4241biimprd 239 . . . . . . . . . . . 12 ((𝐼𝑥) = 𝑦 → (𝑦𝑆 → (𝐼𝑥) ∈ 𝑆))
4342imim1d 82 . . . . . . . . . . 11 ((𝐼𝑥) = 𝑦 → (((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅) → (𝑦𝑆 → (𝐼𝑆) ≠ ∅)))
4440, 43syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((𝐼𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦𝑆 → (𝐼𝑆) ≠ ∅))))
4544com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑦𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))))
4645imp 395 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅)))
4746rexlimdv 3177 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))
4832, 47mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝐼𝑆) ≠ ∅)
4926, 48exlimddv 2030 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ≠ ∅)
50 eqid 2765 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
5150, 1, 2diaglbN 37014 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑆) ⊆ dom 𝐼 ∧ (𝐼𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
5222, 23, 49, 51syl12anc 865 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
53 fvres 6396 . . . . 5 (𝑦 ∈ (𝐼𝑆) → ((𝐼 ↾ (𝐼𝑆))‘𝑦) = (𝐼𝑦))
5453iineq2i 4698 . . . 4 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦)
5552, 54syl6eqr 2817 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦))
56 hlclat 35317 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
5756ad2antrr 717 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
58 eqid 2765 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2765 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
6058, 59, 1, 2diadm 36994 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
61 ssrab2 3849 . . . . . . . . 9 {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} ⊆ (Base‘𝐾)
6260, 61syl6eqss 3817 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 ⊆ (Base‘𝐾))
6362adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 ⊆ (Base‘𝐾))
647, 63syl5ss 3774 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
6558, 50clatglbcl 17383 . . . . . 6 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
6657, 64, 65syl2anc 579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
67 n0 4097 . . . . . . 7 ((𝐼𝑆) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐼𝑆))
6849, 67sylib 209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ (𝐼𝑆))
69 hllat 35322 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7069ad3antrrr 721 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ Lat)
7166adantr 472 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
7264sselda 3763 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (Base‘𝐾))
7358, 1lhpbase 35957 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
7473ad3antlr 722 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑊 ∈ (Base‘𝐾))
7556ad3antrrr 721 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝐾 ∈ CLat)
7660adantr 472 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
777, 76syl5sseq 3815 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
7877, 61syl6ss 3775 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
7978adantr 472 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝐼𝑆) ⊆ (Base‘𝐾))
80 simpr 477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ (𝐼𝑆))
8158, 59, 50clatglble 17394 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
8275, 79, 80, 81syl3anc 1490 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑦)
837sseli 3759 . . . . . . . . . 10 (𝑦 ∈ (𝐼𝑆) → 𝑦 ∈ dom 𝐼)
8483adantl 473 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦 ∈ dom 𝐼)
8558, 59, 1, 2diaeldm 36995 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8685ad2antrr 717 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
8784, 86mpbid 223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))
8887simprd 489 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → 𝑦(le‘𝐾)𝑊)
8958, 59, 70, 71, 72, 74, 82, 88lattrd 17327 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦 ∈ (𝐼𝑆)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9068, 89exlimddv 2030 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)
9158, 59, 1, 2diaeldm 36995 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9291adantr 472 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(𝐼𝑆))(le‘𝐾)𝑊)))
9366, 90, 92mpbir2and 704 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼)
941, 2diaclN 37009 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((glb‘𝐾)‘(𝐼𝑆)) ∈ dom 𝐼) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9593, 94syldan 585 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
9655, 95eqeltrrd 2845 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) ∈ ran 𝐼)
9721, 96eqeltrrd 2845 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  {crab 3059  wss 3734  c0 4081   cint 4635   ciin 4679   class class class wbr 4811  ccnv 5278  dom cdm 5279  ran crn 5280  cres 5281  cima 5282  Fun wfun 6064   Fn wfn 6065  ontowfo 6068  1-1-ontowf1o 6069  cfv 6070  Basecbs 16133  lecple 16224  glbcglb 17212  Latclat 17314  CLatccla 17376  HLchlt 35309  LHypclh 35943  DIsoAcdia 36987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-riotaBAD 34912
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-1st 7368  df-2nd 7369  df-undef 7604  df-map 8064  df-proset 17197  df-poset 17215  df-plt 17227  df-lub 17243  df-glb 17244  df-join 17245  df-meet 17246  df-p0 17308  df-p1 17309  df-lat 17315  df-clat 17377  df-oposet 35135  df-ol 35137  df-oml 35138  df-covers 35225  df-ats 35226  df-atl 35257  df-cvlat 35281  df-hlat 35310  df-llines 35457  df-lplanes 35458  df-lvols 35459  df-lines 35460  df-psubsp 35462  df-pmap 35463  df-padd 35755  df-lhyp 35947  df-laut 35948  df-ldil 36063  df-ltrn 36064  df-trl 36118  df-disoa 36988
This theorem is referenced by:  docaclN  37083
  Copyright terms: Public domain W3C validator