Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiinfv Structured version   Visualization version   GIF version

Theorem imaiinfv 41063
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imaiinfv ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 (𝐹𝑥) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem imaiinfv
StepHypRef Expression
1 fnssres 6628 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fniinfv 6923 . . 3 ((𝐹𝐵) Fn 𝐵 𝑥𝐵 ((𝐹𝐵)‘𝑥) = ran (𝐹𝐵))
31, 2syl 17 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 ((𝐹𝐵)‘𝑥) = ran (𝐹𝐵))
4 fvres 6865 . . . 4 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
54iineq2i 4980 . . 3 𝑥𝐵 ((𝐹𝐵)‘𝑥) = 𝑥𝐵 (𝐹𝑥)
65eqcomi 2742 . 2 𝑥𝐵 (𝐹𝑥) = 𝑥𝐵 ((𝐹𝐵)‘𝑥)
7 df-ima 5650 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
87inteqi 4915 . 2 (𝐹𝐵) = ran (𝐹𝐵)
93, 6, 83eqtr4g 2798 1 ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 (𝐹𝑥) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wss 3914   cint 4911   ciin 4959  ran crn 5638  cres 5639  cima 5640   Fn wfn 6495  cfv 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-fv 6508
This theorem is referenced by:  elrfirn  41065
  Copyright terms: Public domain W3C validator