Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiinfv Structured version   Visualization version   GIF version

Theorem imaiinfv 38691
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imaiinfv ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 (𝐹𝑥) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem imaiinfv
StepHypRef Expression
1 fnssres 6303 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
2 fniinfv 6570 . . 3 ((𝐹𝐵) Fn 𝐵 𝑥𝐵 ((𝐹𝐵)‘𝑥) = ran (𝐹𝐵))
31, 2syl 17 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 ((𝐹𝐵)‘𝑥) = ran (𝐹𝐵))
4 fvres 6518 . . . 4 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
54iineq2i 4813 . . 3 𝑥𝐵 ((𝐹𝐵)‘𝑥) = 𝑥𝐵 (𝐹𝑥)
65eqcomi 2787 . 2 𝑥𝐵 (𝐹𝑥) = 𝑥𝐵 ((𝐹𝐵)‘𝑥)
7 df-ima 5420 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
87inteqi 4753 . 2 (𝐹𝐵) = ran (𝐹𝐵)
93, 6, 83eqtr4g 2839 1 ((𝐹 Fn 𝐴𝐵𝐴) → 𝑥𝐵 (𝐹𝑥) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wss 3829   cint 4749   ciin 4793  ran crn 5408  cres 5409  cima 5410   Fn wfn 6183  cfv 6188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-int 4750  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-fv 6196
This theorem is referenced by:  elrfirn  38693
  Copyright terms: Public domain W3C validator