![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiinfv | Structured version Visualization version GIF version |
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
imaiinfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6303 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fniinfv 6570 | . . 3 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) |
4 | fvres 6518 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | 4 | iineq2i 4813 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) |
6 | 5 | eqcomi 2787 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) |
7 | df-ima 5420 | . . 3 ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | |
8 | 7 | inteqi 4753 | . 2 ⊢ ∩ (𝐹 “ 𝐵) = ∩ ran (𝐹 ↾ 𝐵) |
9 | 3, 6, 8 | 3eqtr4g 2839 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ⊆ wss 3829 ∩ cint 4749 ∩ ciin 4793 ran crn 5408 ↾ cres 5409 “ cima 5410 Fn wfn 6183 ‘cfv 6188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-int 4750 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-fv 6196 |
This theorem is referenced by: elrfirn 38693 |
Copyright terms: Public domain | W3C validator |