![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiinfv | Structured version Visualization version GIF version |
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
imaiinfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6703 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fniinfv 7000 | . . 3 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) |
4 | fvres 6939 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | 4 | iineq2i 5037 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) |
6 | 5 | eqcomi 2749 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) |
7 | df-ima 5713 | . . 3 ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | |
8 | 7 | inteqi 4974 | . 2 ⊢ ∩ (𝐹 “ 𝐵) = ∩ ran (𝐹 ↾ 𝐵) |
9 | 3, 6, 8 | 3eqtr4g 2805 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∩ cint 4970 ∩ ciin 5016 ran crn 5701 ↾ cres 5702 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: elrfirn 42651 |
Copyright terms: Public domain | W3C validator |