Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaiinfv | Structured version Visualization version GIF version |
Description: Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
imaiinfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnssres 6594 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) Fn 𝐵) | |
2 | fniinfv 6886 | . . 3 ⊢ ((𝐹 ↾ 𝐵) Fn 𝐵 → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ ran (𝐹 ↾ 𝐵)) |
4 | fvres 6831 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) | |
5 | 4 | iineq2i 4959 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) = ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) |
6 | 5 | eqcomi 2746 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ 𝑥 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑥) |
7 | df-ima 5621 | . . 3 ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | |
8 | 7 | inteqi 4896 | . 2 ⊢ ∩ (𝐹 “ 𝐵) = ∩ ran (𝐹 ↾ 𝐵) |
9 | 3, 6, 8 | 3eqtr4g 2802 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ⊆ wss 3897 ∩ cint 4892 ∩ ciin 4938 ran crn 5609 ↾ cres 5610 “ cima 5611 Fn wfn 6461 ‘cfv 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-fv 6474 |
This theorem is referenced by: elrfirn 40733 |
Copyright terms: Public domain | W3C validator |