Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihintcl Structured version   Visualization version   GIF version

Theorem dihintcl 40845
Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.)
Hypotheses
Ref Expression
dihintcl.h 𝐻 = (LHypβ€˜πΎ)
dihintcl.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dihintcl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)

Proof of Theorem dihintcl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 dihintcl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
3 dihintcl.i . . . . . . . 8 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
41, 2, 3dihfn 40769 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn (Baseβ€˜πΎ))
51, 2, 3dihdm 40770 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = (Baseβ€˜πΎ))
65fneq2d 6641 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Baseβ€˜πΎ)))
74, 6mpbird 256 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐼)
87adantr 479 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn dom 𝐼)
9 cnvimass 6078 . . . . 5 (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼
10 fnssres 6671 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
118, 9, 10sylancl 584 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
12 fniinfv 6969 . . . 4 ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
1311, 12syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
14 df-ima 5683 . . . . 5 (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆))
154adantr 479 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn (Baseβ€˜πΎ))
16 dffn4 6810 . . . . . . 7 (𝐼 Fn (Baseβ€˜πΎ) ↔ 𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼)
1715, 16sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼)
18 simprl 769 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 βŠ† ran 𝐼)
19 foimacnv 6849 . . . . . 6 ((𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼 ∧ 𝑆 βŠ† ran 𝐼) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
2017, 18, 19syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
2114, 20eqtr3id 2779 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = 𝑆)
2221inteqd 4947 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = ∩ 𝑆)
2313, 22eqtrd 2765 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑆)
24 simpl 481 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
255adantr 479 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ dom 𝐼 = (Baseβ€˜πΎ))
269, 25sseqtrid 4024 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ))
27 simprr 771 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 β‰  βˆ…)
28 n0 4340 . . . . . . 7 (𝑆 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
2927, 28sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
3018sselda 3972 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ ran 𝐼)
3125fneq2d 6641 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Baseβ€˜πΎ)))
3215, 31mpbird 256 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn dom 𝐼)
3332adantr 479 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝐼 Fn dom 𝐼)
34 fvelrnb 6952 . . . . . . . . 9 (𝐼 Fn dom 𝐼 β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3533, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3630, 35mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦)
37 fnfun 6647 . . . . . . . . . . . . . . 15 (𝐼 Fn (Baseβ€˜πΎ) β†’ Fun 𝐼)
3815, 37syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ Fun 𝐼)
39 fvimacnv 7055 . . . . . . . . . . . . . 14 ((Fun 𝐼 ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
4038, 39sylan 578 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
41 ne0i 4328 . . . . . . . . . . . . 13 (π‘₯ ∈ (◑𝐼 β€œ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
4240, 41biimtrdi 252 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
4342ex 411 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
44 eleq1 2813 . . . . . . . . . . . . 13 ((πΌβ€˜π‘₯) = 𝑦 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆))
4544biimprd 247 . . . . . . . . . . . 12 ((πΌβ€˜π‘₯) = 𝑦 β†’ (𝑦 ∈ 𝑆 β†’ (πΌβ€˜π‘₯) ∈ 𝑆))
4645imim1d 82 . . . . . . . . . . 11 ((πΌβ€˜π‘₯) = 𝑦 β†’ (((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…) β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
4743, 46syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (π‘₯ ∈ dom 𝐼 β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4847com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝑦 ∈ 𝑆 β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4948imp 405 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
5049rexlimdv 3143 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
5136, 50mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
5229, 51exlimddv 1930 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
53 eqid 2725 . . . . . 6 (glbβ€˜πΎ) = (glbβ€˜πΎ)
541, 53, 2, 3dihglb 40842 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ) ∧ (◑𝐼 β€œ 𝑆) β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
5524, 26, 52, 54syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
56 fvres 6909 . . . . 5 (𝑦 ∈ (◑𝐼 β€œ 𝑆) β†’ ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = (πΌβ€˜π‘¦))
5756iineq2i 5011 . . . 4 ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦)
5855, 57eqtr4di 2783 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦))
59 hlclat 38858 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
6059ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐾 ∈ CLat)
611, 53clatglbcl 18494 . . . . 5 ((𝐾 ∈ CLat ∧ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
6260, 26, 61syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
631, 2, 3dihcl 40771 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
6462, 63syldan 589 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
6558, 64eqeltrrd 2826 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) ∈ ran 𝐼)
6623, 65eqeltrrd 2826 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   βŠ† wss 3939  βˆ…c0 4316  βˆ© cint 4942  βˆ© ciin 4990  β—‘ccnv 5669  dom cdm 5670  ran crn 5671   β†Ύ cres 5672   β€œ cima 5673  Fun wfun 6535   Fn wfn 6536  β€“ontoβ†’wfo 6539  β€˜cfv 6541  Basecbs 17177  glbcglb 18299  CLatccla 18487  HLchlt 38850  LHypclh 39485  DIsoHcdih 40729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-riotaBAD 38453
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-tpos 8228  df-undef 8275  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-0g 17420  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-grp 18895  df-minusg 18896  df-sbg 18897  df-subg 19080  df-cntz 19270  df-lsm 19593  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-oppr 20275  df-dvdsr 20298  df-unit 20299  df-invr 20329  df-dvr 20342  df-drng 20628  df-lmod 20747  df-lss 20818  df-lsp 20858  df-lvec 20990  df-lsatoms 38476  df-oposet 38676  df-ol 38678  df-oml 38679  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851  df-llines 38999  df-lplanes 39000  df-lvols 39001  df-lines 39002  df-psubsp 39004  df-pmap 39005  df-padd 39297  df-lhyp 39489  df-laut 39490  df-ldil 39605  df-ltrn 39606  df-trl 39660  df-tendo 40256  df-edring 40258  df-disoa 40530  df-dvech 40580  df-dib 40640  df-dic 40674  df-dih 40730
This theorem is referenced by:  doch2val2  40865  dochocss  40867
  Copyright terms: Public domain W3C validator