Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | dihintcl.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | dihintcl.i |
. . . . . . . 8
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
4 | 1, 2, 3 | dihfn 39289 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn (Base‘𝐾)) |
5 | 1, 2, 3 | dihdm 39290 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = (Base‘𝐾)) |
6 | 5 | fneq2d 6536 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Base‘𝐾))) |
7 | 4, 6 | mpbird 256 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐼) |
8 | 7 | adantr 481 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼) |
9 | | cnvimass 5992 |
. . . . 5
⊢ (◡𝐼 “ 𝑆) ⊆ dom 𝐼 |
10 | | fnssres 6564 |
. . . . 5
⊢ ((𝐼 Fn dom 𝐼 ∧ (◡𝐼 “ 𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆)) |
11 | 8, 9, 10 | sylancl 586 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆)) |
12 | | fniinfv 6855 |
. . . 4
⊢ ((𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆) → ∩
𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆))) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆))) |
14 | | df-ima 5603 |
. . . . 5
⊢ (𝐼 “ (◡𝐼 “ 𝑆)) = ran (𝐼 ↾ (◡𝐼 “ 𝑆)) |
15 | 4 | adantr 481 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼 Fn (Base‘𝐾)) |
16 | | dffn4 6703 |
. . . . . . 7
⊢ (𝐼 Fn (Base‘𝐾) ↔ 𝐼:(Base‘𝐾)–onto→ran 𝐼) |
17 | 15, 16 | sylib 217 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼:(Base‘𝐾)–onto→ran 𝐼) |
18 | | simprl 768 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼) |
19 | | foimacnv 6742 |
. . . . . 6
⊢ ((𝐼:(Base‘𝐾)–onto→ran 𝐼 ∧ 𝑆 ⊆ ran 𝐼) → (𝐼 “ (◡𝐼 “ 𝑆)) = 𝑆) |
20 | 17, 18, 19 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼 “ (◡𝐼 “ 𝑆)) = 𝑆) |
21 | 14, 20 | eqtr3id 2793 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ran (𝐼 ↾ (◡𝐼 “ 𝑆)) = 𝑆) |
22 | 21 | inteqd 4885 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆)) = ∩ 𝑆) |
23 | 13, 22 | eqtrd 2779 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ 𝑆) |
24 | | simpl 483 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | 5 | adantr 481 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → dom 𝐼 = (Base‘𝐾)) |
26 | 9, 25 | sseqtrid 3974 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) |
27 | | simprr 770 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
28 | | n0 4281 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑆) |
29 | 27, 28 | sylib 217 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ 𝑆) |
30 | 18 | sselda 3922 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran 𝐼) |
31 | 25 | fneq2d 6536 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Base‘𝐾))) |
32 | 15, 31 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼) |
33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝐼 Fn dom 𝐼) |
34 | | fvelrnb 6839 |
. . . . . . . . 9
⊢ (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦)) |
36 | 30, 35 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦) |
37 | | fnfun 6542 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 Fn (Base‘𝐾) → Fun 𝐼) |
38 | 15, 37 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → Fun 𝐼) |
39 | | fvimacnv 6939 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐼 ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐼 “ 𝑆))) |
40 | 38, 39 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐼 “ 𝑆))) |
41 | | ne0i 4269 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (◡𝐼 “ 𝑆) → (◡𝐼 “ 𝑆) ≠ ∅) |
42 | 40, 41 | syl6bi 252 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅)) |
43 | 42 | ex 413 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅))) |
44 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘𝑥) = 𝑦 → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
45 | 44 | biimprd 247 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝑥) = 𝑦 → (𝑦 ∈ 𝑆 → (𝐼‘𝑥) ∈ 𝑆)) |
46 | 45 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑥) = 𝑦 → (((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅) → (𝑦 ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅))) |
47 | 43, 46 | syl9 77 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝐼‘𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦 ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅)))) |
48 | 47 | com24 95 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑦 ∈ 𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅)))) |
49 | 48 | imp 407 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅))) |
50 | 49 | rexlimdv 3213 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅)) |
51 | 36, 50 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (◡𝐼 “ 𝑆) ≠ ∅) |
52 | 29, 51 | exlimddv 1939 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ≠ ∅) |
53 | | eqid 2739 |
. . . . . 6
⊢
(glb‘𝐾) =
(glb‘𝐾) |
54 | 1, 53, 2, 3 | dihglb 39362 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼 “ 𝑆) ⊆ (Base‘𝐾) ∧ (◡𝐼 “ 𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦)) |
55 | 24, 26, 52, 54 | syl12anc 834 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦)) |
56 | | fvres 6802 |
. . . . 5
⊢ (𝑦 ∈ (◡𝐼 “ 𝑆) → ((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = (𝐼‘𝑦)) |
57 | 56 | iineq2i 4947 |
. . . 4
⊢ ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦) |
58 | 55, 57 | eqtr4di 2797 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦)) |
59 | | hlclat 37379 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
60 | 59 | ad2antrr 723 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
61 | 1, 53 | clatglbcl 18232 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) |
62 | 60, 26, 61 | syl2anc 584 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) |
63 | 1, 2, 3 | dihcl 39291 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) ∈ ran 𝐼) |
64 | 62, 63 | syldan 591 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) ∈ ran 𝐼) |
65 | 58, 64 | eqeltrrd 2841 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) ∈ ran 𝐼) |
66 | 23, 65 | eqeltrrd 2841 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆
∈ ran 𝐼) |