Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihintcl Structured version   Visualization version   GIF version

Theorem dihintcl 40203
Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.)
Hypotheses
Ref Expression
dihintcl.h 𝐻 = (LHypβ€˜πΎ)
dihintcl.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dihintcl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)

Proof of Theorem dihintcl
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 dihintcl.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
3 dihintcl.i . . . . . . . 8 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
41, 2, 3dihfn 40127 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn (Baseβ€˜πΎ))
51, 2, 3dihdm 40128 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ dom 𝐼 = (Baseβ€˜πΎ))
65fneq2d 6640 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Baseβ€˜πΎ)))
74, 6mpbird 256 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐼)
87adantr 481 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn dom 𝐼)
9 cnvimass 6077 . . . . 5 (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼
10 fnssres 6670 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (◑𝐼 β€œ 𝑆) βŠ† dom 𝐼) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
118, 9, 10sylancl 586 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆))
12 fniinfv 6966 . . . 4 ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) Fn (◑𝐼 β€œ 𝑆) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
1311, 12syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)))
14 df-ima 5688 . . . . 5 (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆))
154adantr 481 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn (Baseβ€˜πΎ))
16 dffn4 6808 . . . . . . 7 (𝐼 Fn (Baseβ€˜πΎ) ↔ 𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼)
1715, 16sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼)
18 simprl 769 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 βŠ† ran 𝐼)
19 foimacnv 6847 . . . . . 6 ((𝐼:(Baseβ€˜πΎ)–ontoβ†’ran 𝐼 ∧ 𝑆 βŠ† ran 𝐼) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
2017, 18, 19syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 β€œ (◑𝐼 β€œ 𝑆)) = 𝑆)
2114, 20eqtr3id 2786 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = 𝑆)
2221inteqd 4954 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ ran (𝐼 β†Ύ (◑𝐼 β€œ 𝑆)) = ∩ 𝑆)
2313, 22eqtrd 2772 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑆)
24 simpl 483 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
255adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ dom 𝐼 = (Baseβ€˜πΎ))
269, 25sseqtrid 4033 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ))
27 simprr 771 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝑆 β‰  βˆ…)
28 n0 4345 . . . . . . 7 (𝑆 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
2927, 28sylib 217 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
3018sselda 3981 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ ran 𝐼)
3125fneq2d 6640 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝐼 Fn dom 𝐼 ↔ 𝐼 Fn (Baseβ€˜πΎ)))
3215, 31mpbird 256 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐼 Fn dom 𝐼)
3332adantr 481 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ 𝐼 Fn dom 𝐼)
34 fvelrnb 6949 . . . . . . . . 9 (𝐼 Fn dom 𝐼 β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3533, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (𝑦 ∈ ran 𝐼 ↔ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦))
3630, 35mpbid 231 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦)
37 fnfun 6646 . . . . . . . . . . . . . . 15 (𝐼 Fn (Baseβ€˜πΎ) β†’ Fun 𝐼)
3815, 37syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ Fun 𝐼)
39 fvimacnv 7051 . . . . . . . . . . . . . 14 ((Fun 𝐼 ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
4038, 39sylan 580 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ π‘₯ ∈ (◑𝐼 β€œ 𝑆)))
41 ne0i 4333 . . . . . . . . . . . . 13 (π‘₯ ∈ (◑𝐼 β€œ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
4240, 41syl6bi 252 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ π‘₯ ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
4342ex 413 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
44 eleq1 2821 . . . . . . . . . . . . 13 ((πΌβ€˜π‘₯) = 𝑦 β†’ ((πΌβ€˜π‘₯) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆))
4544biimprd 247 . . . . . . . . . . . 12 ((πΌβ€˜π‘₯) = 𝑦 β†’ (𝑦 ∈ 𝑆 β†’ (πΌβ€˜π‘₯) ∈ 𝑆))
4645imim1d 82 . . . . . . . . . . 11 ((πΌβ€˜π‘₯) = 𝑦 β†’ (((πΌβ€˜π‘₯) ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…) β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
4743, 46syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (π‘₯ ∈ dom 𝐼 β†’ (𝑦 ∈ 𝑆 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4847com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (𝑦 ∈ 𝑆 β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))))
4948imp 407 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (π‘₯ ∈ dom 𝐼 β†’ ((πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)))
5049rexlimdv 3153 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (βˆƒπ‘₯ ∈ dom 𝐼(πΌβ€˜π‘₯) = 𝑦 β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…))
5136, 50mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) ∧ 𝑦 ∈ 𝑆) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
5229, 51exlimddv 1938 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (◑𝐼 β€œ 𝑆) β‰  βˆ…)
53 eqid 2732 . . . . . 6 (glbβ€˜πΎ) = (glbβ€˜πΎ)
541, 53, 2, 3dihglb 40200 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ) ∧ (◑𝐼 β€œ 𝑆) β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
5524, 26, 52, 54syl12anc 835 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦))
56 fvres 6907 . . . . 5 (𝑦 ∈ (◑𝐼 β€œ 𝑆) β†’ ((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = (πΌβ€˜π‘¦))
5756iineq2i 5018 . . . 4 ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)(πΌβ€˜π‘¦)
5855, 57eqtr4di 2790 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) = ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦))
59 hlclat 38216 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
6059ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ 𝐾 ∈ CLat)
611, 53clatglbcl 18454 . . . . 5 ((𝐾 ∈ CLat ∧ (◑𝐼 β€œ 𝑆) βŠ† (Baseβ€˜πΎ)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
6260, 26, 61syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ))
631, 2, 3dihcl 40129 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
6462, 63syldan 591 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜(◑𝐼 β€œ 𝑆))) ∈ ran 𝐼)
6558, 64eqeltrrd 2834 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑦 ∈ (◑𝐼 β€œ 𝑆)((𝐼 β†Ύ (◑𝐼 β€œ 𝑆))β€˜π‘¦) ∈ ran 𝐼)
6623, 65eqeltrrd 2834 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 βŠ† ran 𝐼 ∧ 𝑆 β‰  βˆ…)) β†’ ∩ 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   βŠ† wss 3947  βˆ…c0 4321  βˆ© cint 4949  βˆ© ciin 4997  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534   Fn wfn 6535  β€“ontoβ†’wfo 6538  β€˜cfv 6540  Basecbs 17140  glbcglb 18259  CLatccla 18447  HLchlt 38208  LHypclh 38843  DIsoHcdih 40087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-dvr 20207  df-drng 20309  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lvec 20706  df-lsatoms 37834  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-tendo 39614  df-edring 39616  df-disoa 39888  df-dvech 39938  df-dib 39998  df-dic 40032  df-dih 40088
This theorem is referenced by:  doch2val2  40223  dochocss  40225
  Copyright terms: Public domain W3C validator