MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab Structured version   Visualization version   GIF version

Theorem iinrab 5009
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 4441 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)))
21abbidv 2806 . 2 (𝐴 ≠ ∅ → {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)})
3 df-rab 3405 . . . . 5 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
43a1i 11 . . . 4 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
54iineq2i 4957 . . 3 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
6 iinab 5008 . . 3 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
75, 6eqtri 2765 . 2 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
8 df-rab 3405 . 2 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)}
92, 7, 83eqtr4g 2802 1 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  {cab 2714  wne 2941  wral 3062  {crab 3404  c0 4266   ciin 4936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rab 3405  df-v 3443  df-dif 3899  df-nul 4267  df-iin 4938
This theorem is referenced by:  iinrab2  5010  riinrab  5024  ubthlem1  29340  pmapglbx  37995  preimageiingt  44503  preimaleiinlt  44504
  Copyright terms: Public domain W3C validator