MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab Structured version   Visualization version   GIF version

Theorem iinrab 4994
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 4428 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)))
21abbidv 2808 . 2 (𝐴 ≠ ∅ → {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)})
3 df-rab 3072 . . . . 5 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
43a1i 11 . . . 4 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
54iineq2i 4943 . . 3 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
6 iinab 4993 . . 3 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
75, 6eqtri 2766 . 2 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
8 df-rab 3072 . 2 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)}
92, 7, 83eqtr4g 2804 1 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  {crab 3067  c0 4253   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-nul 4254  df-iin 4924
This theorem is referenced by:  iinrab2  4995  riinrab  5009  ubthlem1  29133  pmapglbx  37710  preimageiingt  44144  preimaleiinlt  44145
  Copyright terms: Public domain W3C validator