MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab Structured version   Visualization version   GIF version

Theorem iinrab 4815
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Distinct variable groups:   𝑦,𝐴,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 4288 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)))
21abbidv 2905 . 2 (𝐴 ≠ ∅ → {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)})
3 df-rab 3098 . . . . 5 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
43a1i 11 . . . 4 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
54iineq2i 4773 . . 3 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
6 iinab 4814 . . 3 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
75, 6eqtri 2801 . 2 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦 ∣ ∀𝑥𝐴 (𝑦𝐵𝜑)}
8 df-rab 3098 . 2 {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∀𝑥𝐴 𝜑)}
92, 7, 83eqtr4g 2838 1 (𝐴 ≠ ∅ → 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  {cab 2762  wne 2968  wral 3089  {crab 3093  c0 4140   ciin 4754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rab 3098  df-v 3399  df-dif 3794  df-nul 4141  df-iin 4756
This theorem is referenced by:  iinrab2  4816  riinrab  4829  ubthlem1  28298  pmapglbx  35918  preimageiingt  41850  preimaleiinlt  41851
  Copyright terms: Public domain W3C validator