![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinrab | Structured version Visualization version GIF version |
Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinrab | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 4499 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑))) | |
2 | 1 | abbidv 2799 | . 2 ⊢ (𝐴 ≠ ∅ → {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)}) |
3 | df-rab 3431 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
5 | 4 | iineq2i 5018 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
6 | iinab 5070 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
7 | 5, 6 | eqtri 2758 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
8 | df-rab 3431 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)} | |
9 | 2, 7, 8 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {cab 2707 ≠ wne 2938 ∀wral 3059 {crab 3430 ∅c0 4321 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-nul 4322 df-iin 4999 |
This theorem is referenced by: iinrab2 5072 riinrab 5086 ubthlem1 30390 pmapglbx 38943 preimageiingt 45734 preimaleiinlt 45735 |
Copyright terms: Public domain | W3C validator |