| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinrab | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011.) |
| Ref | Expression |
|---|---|
| iinrab | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.28zv 4501 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑))) | |
| 2 | 1 | abbidv 2808 | . 2 ⊢ (𝐴 ≠ ∅ → {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)}) |
| 3 | df-rab 3437 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
| 5 | 4 | iineq2i 5014 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 6 | iinab 5068 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 7 | 5, 6 | eqtri 2765 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 8 | df-rab 3437 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)} | |
| 9 | 2, 7, 8 | 3eqtr4g 2802 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ≠ wne 2940 ∀wral 3061 {crab 3436 ∅c0 4333 ∩ ciin 4992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-nul 4334 df-iin 4994 |
| This theorem is referenced by: iinrab2 5070 riinrab 5084 ubthlem1 30889 pmapglbx 39771 preimageiingt 46735 preimaleiinlt 46736 |
| Copyright terms: Public domain | W3C validator |