| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneqconst2 | Structured version Visualization version GIF version | ||
| Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| iuneqconst2 | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4002 | . . . . 5 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 4 | iunss 5004 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | r19.2z 4454 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 = 𝐶) | |
| 7 | eqimss2 4003 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
| 8 | 7 | reximi 3067 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 9 | ssiun 5005 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 10 | 6, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 11 | 5, 10 | eqssd 3961 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 df-iun 4953 |
| This theorem is referenced by: imasubc 49133 |
| Copyright terms: Public domain | W3C validator |