Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneqconst2 Structured version   Visualization version   GIF version

Theorem iuneqconst2 48695
Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.)
Assertion
Ref Expression
iuneqconst2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuneqconst2
StepHypRef Expression
1 eqimss 4015 . . . . 5 (𝐵 = 𝐶𝐵𝐶)
21ralimi 3072 . . . 4 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐵𝐶)
32adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → ∀𝑥𝐴 𝐵𝐶)
4 iunss 5019 . . 3 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
53, 4sylibr 234 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵𝐶)
6 r19.2z 4468 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → ∃𝑥𝐴 𝐵 = 𝐶)
7 eqimss2 4016 . . . 4 (𝐵 = 𝐶𝐶𝐵)
87reximi 3073 . . 3 (∃𝑥𝐴 𝐵 = 𝐶 → ∃𝑥𝐴 𝐶𝐵)
9 ssiun 5020 . . 3 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
106, 8, 93syl 18 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝐶 𝑥𝐴 𝐵)
115, 10eqssd 3974 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐶) → 𝑥𝐴 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wne 2931  wral 3050  wrex 3059  wss 3924  c0 4306   ciun 4965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-v 3459  df-dif 3927  df-ss 3941  df-nul 4307  df-iun 4967
This theorem is referenced by:  imasubc  48961
  Copyright terms: Public domain W3C validator