| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iuneqconst2 | Structured version Visualization version GIF version | ||
| Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| iuneqconst2 | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 4015 | . . . . 5 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
| 2 | 1 | ralimi 3072 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 4 | iunss 5019 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | r19.2z 4468 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 = 𝐶) | |
| 7 | eqimss2 4016 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
| 8 | 7 | reximi 3073 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 9 | ssiun 5020 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 10 | 6, 8, 9 | 3syl 18 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 11 | 5, 10 | eqssd 3974 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 ∅c0 4306 ∪ ciun 4965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-v 3459 df-dif 3927 df-ss 3941 df-nul 4307 df-iun 4967 |
| This theorem is referenced by: imasubc 48961 |
| Copyright terms: Public domain | W3C validator |