Proof of Theorem iinfconstbas
| Step | Hyp | Ref
| Expression |
| 1 | | discsubc.j |
. . 3
⊢ 𝐽 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 2 | | discsubc.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
| 3 | | discsubc.i |
. . . . . . . 8
⊢ 𝐼 = (Id‘𝐶) |
| 4 | | discsubc.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 5 | | discsubc.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 6 | | iinfconstbas.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 7 | 1, 2, 3, 4, 5, 6 | iinfconstbaslem 48926 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| 8 | 7 | ne0d 4315 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 9 | | iinconst 4976 |
. . . . . 6
⊢ (𝐴 ≠ ∅ → ∩ ℎ
∈ 𝐴 𝑆 = 𝑆) |
| 10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → ∩ ℎ
∈ 𝐴 𝑆 = 𝑆) |
| 11 | 10 | eqcomd 2740 |
. . . 4
⊢ (𝜑 → 𝑆 = ∩ ℎ ∈ 𝐴 𝑆) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 = ∩ ℎ ∈ 𝐴 𝑆) |
| 13 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐽 ∈ 𝐴) |
| 14 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ = 𝐽) → ℎ = 𝐽) |
| 15 | 14 | oveqd 7417 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ = 𝐽) → (𝑥ℎ𝑦) = (𝑥𝐽𝑦)) |
| 16 | | snex 5404 |
. . . . . . . . . 10
⊢ {(𝐼‘𝑥)} ∈ V |
| 17 | | 0ex 5275 |
. . . . . . . . . 10
⊢ ∅
∈ V |
| 18 | 16, 17 | ifex 4549 |
. . . . . . . . 9
⊢ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ∈ V |
| 19 | 1 | ovmpt4g 7549 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 20 | 18, 19 | mp3an3 1451 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 21 | 20 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 22 | 15, 21 | eqtrd 2769 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ = 𝐽) → (𝑥ℎ𝑦) = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 23 | | sseq1 3982 |
. . . . . . 7
⊢ ({(𝐼‘𝑥)} = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) → ({(𝐼‘𝑥)} ⊆ (𝑥ℎ𝑦) ↔ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ⊆ (𝑥ℎ𝑦))) |
| 24 | | sseq1 3982 |
. . . . . . 7
⊢ (∅
= if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) → (∅ ⊆ (𝑥ℎ𝑦) ↔ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ⊆ (𝑥ℎ𝑦))) |
| 25 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ ∈ 𝐴) |
| 26 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 27 | 25, 26 | eleqtrd 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ ∈ ((Subcat‘𝐶) ∩ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)})) |
| 28 | 27 | elin1d 4177 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ ∈ (Subcat‘𝐶)) |
| 29 | 28 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) → ℎ ∈ (Subcat‘𝐶)) |
| 30 | 27 | elin2d 4178 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)}) |
| 31 | | vex 3461 |
. . . . . . . . . . . . . 14
⊢ ℎ ∈ V |
| 32 | | fneq1 6626 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = ℎ → (𝑗 Fn (𝑆 × 𝑆) ↔ ℎ Fn (𝑆 × 𝑆))) |
| 33 | 31, 32 | elab 3656 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ {𝑗 ∣ 𝑗 Fn (𝑆 × 𝑆)} ↔ ℎ Fn (𝑆 × 𝑆)) |
| 34 | 30, 33 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ Fn (𝑆 × 𝑆)) |
| 35 | 34 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) → ℎ Fn (𝑆 × 𝑆)) |
| 36 | | simplrl 776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) → 𝑥 ∈ 𝑆) |
| 37 | 29, 35, 36, 3 | subcidcl 17844 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) → (𝐼‘𝑥) ∈ (𝑥ℎ𝑥)) |
| 38 | 37 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼‘𝑥) ∈ (𝑥ℎ𝑥)) |
| 39 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) |
| 40 | 39 | oveq2d 7416 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥ℎ𝑥) = (𝑥ℎ𝑦)) |
| 41 | 38, 40 | eleqtrd 2835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼‘𝑥) ∈ (𝑥ℎ𝑦)) |
| 42 | 41 | snssd 4783 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼‘𝑥)} ⊆ (𝑥ℎ𝑦)) |
| 43 | | 0ss 4373 |
. . . . . . . 8
⊢ ∅
⊆ (𝑥ℎ𝑦) |
| 44 | 43 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥ℎ𝑦)) |
| 45 | 23, 24, 42, 44 | ifbothda 4537 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ ℎ ∈ 𝐴) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) ⊆ (𝑥ℎ𝑦)) |
| 46 | 13, 22, 45 | iinglb 48694 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∩ ℎ
∈ 𝐴 (𝑥ℎ𝑦) = if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) |
| 47 | 46 | eqcomd 2740 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅) = ∩ ℎ
∈ 𝐴 (𝑥ℎ𝑦)) |
| 48 | 11, 12, 47 | mpoeq123dva 7476 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝑦, {(𝐼‘𝑥)}, ∅)) = (𝑥 ∈ ∩
ℎ ∈ 𝐴 𝑆, 𝑦 ∈ ∩
ℎ ∈ 𝐴 𝑆 ↦ ∩
ℎ ∈ 𝐴 (𝑥ℎ𝑦))) |
| 49 | 1, 48 | eqtrid 2781 |
. 2
⊢ (𝜑 → 𝐽 = (𝑥 ∈ ∩
ℎ ∈ 𝐴 𝑆, 𝑦 ∈ ∩
ℎ ∈ 𝐴 𝑆 ↦ ∩
ℎ ∈ 𝐴 (𝑥ℎ𝑦))) |
| 50 | | eqid 2734 |
. . . 4
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
| 51 | 28, 50 | subcssc 17840 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → ℎ ⊆cat (Homf
‘𝐶)) |
| 52 | | eqidd 2735 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ∩
ℎ ∈ 𝐴 dom ℎ ↦ ∩
ℎ ∈ 𝐴 (ℎ‘𝑧)) = (𝑧 ∈ ∩
ℎ ∈ 𝐴 dom ℎ ↦ ∩
ℎ ∈ 𝐴 (ℎ‘𝑧))) |
| 53 | | dmdm 48914 |
. . . 4
⊢ (ℎ Fn (𝑆 × 𝑆) → 𝑆 = dom dom ℎ) |
| 54 | 34, 53 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ℎ ∈ 𝐴) → 𝑆 = dom dom ℎ) |
| 55 | | nfv 1913 |
. . 3
⊢
Ⅎℎ𝜑 |
| 56 | 8, 51, 52, 54, 55 | iinfssclem1 48915 |
. 2
⊢ (𝜑 → (𝑧 ∈ ∩
ℎ ∈ 𝐴 dom ℎ ↦ ∩
ℎ ∈ 𝐴 (ℎ‘𝑧)) = (𝑥 ∈ ∩
ℎ ∈ 𝐴 𝑆, 𝑦 ∈ ∩
ℎ ∈ 𝐴 𝑆 ↦ ∩
ℎ ∈ 𝐴 (𝑥ℎ𝑦))) |
| 57 | 49, 56 | eqtr4d 2772 |
1
⊢ (𝜑 → 𝐽 = (𝑧 ∈ ∩
ℎ ∈ 𝐴 dom ℎ ↦ ∩
ℎ ∈ 𝐴 (ℎ‘𝑧))) |