Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbas Structured version   Visualization version   GIF version

Theorem iinfconstbas 49055
Description: The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbas (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   ,𝐽,𝑗   𝑆,,𝑗   𝐴,,𝑥,𝑦,𝑧   ,𝐼   𝑧,𝑆   𝜑,,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑗)   𝐴(𝑗)   𝐵(𝑥,𝑦,𝑧,,𝑗)   𝐶(𝑥,𝑦,𝑧,,𝑗)   𝐼(𝑧,𝑗)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem iinfconstbas
StepHypRef Expression
1 discsubc.j . . 3 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . . . . . 8 𝐵 = (Base‘𝐶)
3 discsubc.i . . . . . . . 8 𝐼 = (Id‘𝐶)
4 discsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
5 discsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6 iinfconstbas.a . . . . . . . 8 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
71, 2, 3, 4, 5, 6iinfconstbaslem 49054 . . . . . . 7 (𝜑𝐽𝐴)
87ne0d 4293 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinconst 4952 . . . . . 6 (𝐴 ≠ ∅ → 𝐴 𝑆 = 𝑆)
108, 9syl 17 . . . . 5 (𝜑 𝐴 𝑆 = 𝑆)
1110eqcomd 2735 . . . 4 (𝜑𝑆 = 𝐴 𝑆)
1211adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝑆 = 𝐴 𝑆)
137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐽𝐴)
14 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → = 𝐽)
1514oveqd 7366 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = (𝑥𝐽𝑦))
16 snex 5375 . . . . . . . . . 10 {(𝐼𝑥)} ∈ V
17 0ex 5246 . . . . . . . . . 10 ∅ ∈ V
1816, 17ifex 4527 . . . . . . . . 9 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
191ovmpt4g 7496 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆 ∧ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2018, 19mp3an3 1452 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2120ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2215, 21eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
23 sseq1 3961 . . . . . . 7 ({(𝐼𝑥)} = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → ({(𝐼𝑥)} ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
24 sseq1 3961 . . . . . . 7 (∅ = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → (∅ ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
25 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴)
266adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2725, 26eleqtrd 2830 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2827elin1d 4155 . . . . . . . . . . . 12 ((𝜑𝐴) → ∈ (Subcat‘𝐶))
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → ∈ (Subcat‘𝐶))
3027elin2d 4156 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
31 vex 3440 . . . . . . . . . . . . . 14 ∈ V
32 fneq1 6573 . . . . . . . . . . . . . 14 (𝑗 = → (𝑗 Fn (𝑆 × 𝑆) ↔ Fn (𝑆 × 𝑆)))
3331, 32elab 3635 . . . . . . . . . . . . 13 ( ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)} ↔ Fn (𝑆 × 𝑆))
3430, 33sylib 218 . . . . . . . . . . . 12 ((𝜑𝐴) → Fn (𝑆 × 𝑆))
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → Fn (𝑆 × 𝑆))
36 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → 𝑥𝑆)
3729, 35, 36, 3subcidcl 17751 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → (𝐼𝑥) ∈ (𝑥𝑥))
3837adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑥))
39 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
4039oveq2d 7365 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥𝑥) = (𝑥𝑦))
4138, 40eleqtrd 2830 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑦))
4241snssd 4760 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼𝑥)} ⊆ (𝑥𝑦))
43 0ss 4351 . . . . . . . 8 ∅ ⊆ (𝑥𝑦)
4443a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥𝑦))
4523, 24, 42, 44ifbothda 4515 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦))
4613, 22, 45iinglb 48810 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
4746eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = 𝐴 (𝑥𝑦))
4811, 12, 47mpoeq123dva 7423 . . 3 (𝜑 → (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
491, 48eqtrid 2776 . 2 (𝜑𝐽 = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
50 eqid 2729 . . . 4 (Homf𝐶) = (Homf𝐶)
5128, 50subcssc 17747 . . 3 ((𝜑𝐴) → cat (Homf𝐶))
52 eqidd 2730 . . 3 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑧 𝐴 dom 𝐴 (𝑧)))
53 dmdm 49042 . . . 4 ( Fn (𝑆 × 𝑆) → 𝑆 = dom dom )
5434, 53syl 17 . . 3 ((𝜑𝐴) → 𝑆 = dom dom )
55 nfv 1914 . . 3 𝜑
568, 51, 52, 54, 55iinfssclem1 49043 . 2 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
5749, 56eqtr4d 2767 1 (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  Vcvv 3436  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   ciin 4942  cmpt 5173   × cxp 5617  dom cdm 5619   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Catccat 17570  Idccid 17571  Homf chomf 17572  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-pm 8756  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator