Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbas Structured version   Visualization version   GIF version

Theorem iinfconstbas 48927
Description: The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbas (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   ,𝐽,𝑗   𝑆,,𝑗   𝐴,,𝑥,𝑦,𝑧   ,𝐼   𝑧,𝑆   𝜑,,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑗)   𝐴(𝑗)   𝐵(𝑥,𝑦,𝑧,,𝑗)   𝐶(𝑥,𝑦,𝑧,,𝑗)   𝐼(𝑧,𝑗)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem iinfconstbas
StepHypRef Expression
1 discsubc.j . . 3 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . . . . . 8 𝐵 = (Base‘𝐶)
3 discsubc.i . . . . . . . 8 𝐼 = (Id‘𝐶)
4 discsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
5 discsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6 iinfconstbas.a . . . . . . . 8 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
71, 2, 3, 4, 5, 6iinfconstbaslem 48926 . . . . . . 7 (𝜑𝐽𝐴)
87ne0d 4315 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinconst 4976 . . . . . 6 (𝐴 ≠ ∅ → 𝐴 𝑆 = 𝑆)
108, 9syl 17 . . . . 5 (𝜑 𝐴 𝑆 = 𝑆)
1110eqcomd 2740 . . . 4 (𝜑𝑆 = 𝐴 𝑆)
1211adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝑆 = 𝐴 𝑆)
137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐽𝐴)
14 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → = 𝐽)
1514oveqd 7417 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = (𝑥𝐽𝑦))
16 snex 5404 . . . . . . . . . 10 {(𝐼𝑥)} ∈ V
17 0ex 5275 . . . . . . . . . 10 ∅ ∈ V
1816, 17ifex 4549 . . . . . . . . 9 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
191ovmpt4g 7549 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆 ∧ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2018, 19mp3an3 1451 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2120ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2215, 21eqtrd 2769 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
23 sseq1 3982 . . . . . . 7 ({(𝐼𝑥)} = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → ({(𝐼𝑥)} ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
24 sseq1 3982 . . . . . . 7 (∅ = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → (∅ ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
25 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴)
266adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2725, 26eleqtrd 2835 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2827elin1d 4177 . . . . . . . . . . . 12 ((𝜑𝐴) → ∈ (Subcat‘𝐶))
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → ∈ (Subcat‘𝐶))
3027elin2d 4178 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
31 vex 3461 . . . . . . . . . . . . . 14 ∈ V
32 fneq1 6626 . . . . . . . . . . . . . 14 (𝑗 = → (𝑗 Fn (𝑆 × 𝑆) ↔ Fn (𝑆 × 𝑆)))
3331, 32elab 3656 . . . . . . . . . . . . 13 ( ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)} ↔ Fn (𝑆 × 𝑆))
3430, 33sylib 218 . . . . . . . . . . . 12 ((𝜑𝐴) → Fn (𝑆 × 𝑆))
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → Fn (𝑆 × 𝑆))
36 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → 𝑥𝑆)
3729, 35, 36, 3subcidcl 17844 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → (𝐼𝑥) ∈ (𝑥𝑥))
3837adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑥))
39 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
4039oveq2d 7416 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥𝑥) = (𝑥𝑦))
4138, 40eleqtrd 2835 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑦))
4241snssd 4783 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼𝑥)} ⊆ (𝑥𝑦))
43 0ss 4373 . . . . . . . 8 ∅ ⊆ (𝑥𝑦)
4443a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥𝑦))
4523, 24, 42, 44ifbothda 4537 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦))
4613, 22, 45iinglb 48694 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
4746eqcomd 2740 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = 𝐴 (𝑥𝑦))
4811, 12, 47mpoeq123dva 7476 . . 3 (𝜑 → (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
491, 48eqtrid 2781 . 2 (𝜑𝐽 = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
50 eqid 2734 . . . 4 (Homf𝐶) = (Homf𝐶)
5128, 50subcssc 17840 . . 3 ((𝜑𝐴) → cat (Homf𝐶))
52 eqidd 2735 . . 3 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑧 𝐴 dom 𝐴 (𝑧)))
53 dmdm 48914 . . . 4 ( Fn (𝑆 × 𝑆) → 𝑆 = dom dom )
5434, 53syl 17 . . 3 ((𝜑𝐴) → 𝑆 = dom dom )
55 nfv 1913 . . 3 𝜑
568, 51, 52, 54, 55iinfssclem1 48915 . 2 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
5749, 56eqtr4d 2772 1 (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wne 2931  Vcvv 3457  cin 3923  wss 3924  c0 4306  ifcif 4498  {csn 4599   ciin 4966  cmpt 5199   × cxp 5650  dom cdm 5652   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Catccat 17663  Idccid 17664  Homf chomf 17665  Subcatcsubc 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-pm 8838  df-ixp 8907  df-cat 17667  df-cid 17668  df-homf 17669  df-ssc 17810  df-subc 17812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator