Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbas Structured version   Visualization version   GIF version

Theorem iinfconstbas 49045
Description: The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbas (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   ,𝐽,𝑗   𝑆,,𝑗   𝐴,,𝑥,𝑦,𝑧   ,𝐼   𝑧,𝑆   𝜑,,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑗)   𝐴(𝑗)   𝐵(𝑥,𝑦,𝑧,,𝑗)   𝐶(𝑥,𝑦,𝑧,,𝑗)   𝐼(𝑧,𝑗)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem iinfconstbas
StepHypRef Expression
1 discsubc.j . . 3 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . . . . . 8 𝐵 = (Base‘𝐶)
3 discsubc.i . . . . . . . 8 𝐼 = (Id‘𝐶)
4 discsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
5 discsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6 iinfconstbas.a . . . . . . . 8 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
71, 2, 3, 4, 5, 6iinfconstbaslem 49044 . . . . . . 7 (𝜑𝐽𝐴)
87ne0d 4307 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinconst 4968 . . . . . 6 (𝐴 ≠ ∅ → 𝐴 𝑆 = 𝑆)
108, 9syl 17 . . . . 5 (𝜑 𝐴 𝑆 = 𝑆)
1110eqcomd 2736 . . . 4 (𝜑𝑆 = 𝐴 𝑆)
1211adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝑆 = 𝐴 𝑆)
137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐽𝐴)
14 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → = 𝐽)
1514oveqd 7406 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = (𝑥𝐽𝑦))
16 snex 5393 . . . . . . . . . 10 {(𝐼𝑥)} ∈ V
17 0ex 5264 . . . . . . . . . 10 ∅ ∈ V
1816, 17ifex 4541 . . . . . . . . 9 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
191ovmpt4g 7538 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆 ∧ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2018, 19mp3an3 1452 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2120ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2215, 21eqtrd 2765 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
23 sseq1 3974 . . . . . . 7 ({(𝐼𝑥)} = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → ({(𝐼𝑥)} ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
24 sseq1 3974 . . . . . . 7 (∅ = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → (∅ ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
25 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴)
266adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2725, 26eleqtrd 2831 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2827elin1d 4169 . . . . . . . . . . . 12 ((𝜑𝐴) → ∈ (Subcat‘𝐶))
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → ∈ (Subcat‘𝐶))
3027elin2d 4170 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
31 vex 3454 . . . . . . . . . . . . . 14 ∈ V
32 fneq1 6611 . . . . . . . . . . . . . 14 (𝑗 = → (𝑗 Fn (𝑆 × 𝑆) ↔ Fn (𝑆 × 𝑆)))
3331, 32elab 3648 . . . . . . . . . . . . 13 ( ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)} ↔ Fn (𝑆 × 𝑆))
3430, 33sylib 218 . . . . . . . . . . . 12 ((𝜑𝐴) → Fn (𝑆 × 𝑆))
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → Fn (𝑆 × 𝑆))
36 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → 𝑥𝑆)
3729, 35, 36, 3subcidcl 17812 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → (𝐼𝑥) ∈ (𝑥𝑥))
3837adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑥))
39 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
4039oveq2d 7405 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥𝑥) = (𝑥𝑦))
4138, 40eleqtrd 2831 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑦))
4241snssd 4775 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼𝑥)} ⊆ (𝑥𝑦))
43 0ss 4365 . . . . . . . 8 ∅ ⊆ (𝑥𝑦)
4443a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥𝑦))
4523, 24, 42, 44ifbothda 4529 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦))
4613, 22, 45iinglb 48800 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
4746eqcomd 2736 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = 𝐴 (𝑥𝑦))
4811, 12, 47mpoeq123dva 7465 . . 3 (𝜑 → (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
491, 48eqtrid 2777 . 2 (𝜑𝐽 = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
50 eqid 2730 . . . 4 (Homf𝐶) = (Homf𝐶)
5128, 50subcssc 17808 . . 3 ((𝜑𝐴) → cat (Homf𝐶))
52 eqidd 2731 . . 3 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑧 𝐴 dom 𝐴 (𝑧)))
53 dmdm 49032 . . . 4 ( Fn (𝑆 × 𝑆) → 𝑆 = dom dom )
5434, 53syl 17 . . 3 ((𝜑𝐴) → 𝑆 = dom dom )
55 nfv 1914 . . 3 𝜑
568, 51, 52, 54, 55iinfssclem1 49033 . 2 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
5749, 56eqtr4d 2768 1 (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  Vcvv 3450  cin 3915  wss 3916  c0 4298  ifcif 4490  {csn 4591   ciin 4958  cmpt 5190   × cxp 5638  dom cdm 5640   Fn wfn 6508  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Catccat 17631  Idccid 17632  Homf chomf 17633  Subcatcsubc 17777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-pm 8804  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-ssc 17778  df-subc 17780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator