Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbas Structured version   Visualization version   GIF version

Theorem iinfconstbas 49177
Description: The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbas (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   ,𝐽,𝑗   𝑆,,𝑗   𝐴,,𝑥,𝑦,𝑧   ,𝐼   𝑧,𝑆   𝜑,,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑗)   𝐴(𝑗)   𝐵(𝑥,𝑦,𝑧,,𝑗)   𝐶(𝑥,𝑦,𝑧,,𝑗)   𝐼(𝑧,𝑗)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem iinfconstbas
StepHypRef Expression
1 discsubc.j . . 3 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . . . . . 8 𝐵 = (Base‘𝐶)
3 discsubc.i . . . . . . . 8 𝐼 = (Id‘𝐶)
4 discsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
5 discsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6 iinfconstbas.a . . . . . . . 8 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
71, 2, 3, 4, 5, 6iinfconstbaslem 49176 . . . . . . 7 (𝜑𝐽𝐴)
87ne0d 4289 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinconst 4950 . . . . . 6 (𝐴 ≠ ∅ → 𝐴 𝑆 = 𝑆)
108, 9syl 17 . . . . 5 (𝜑 𝐴 𝑆 = 𝑆)
1110eqcomd 2737 . . . 4 (𝜑𝑆 = 𝐴 𝑆)
1211adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝑆 = 𝐴 𝑆)
137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐽𝐴)
14 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → = 𝐽)
1514oveqd 7363 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = (𝑥𝐽𝑦))
16 snex 5372 . . . . . . . . . 10 {(𝐼𝑥)} ∈ V
17 0ex 5243 . . . . . . . . . 10 ∅ ∈ V
1816, 17ifex 4523 . . . . . . . . 9 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
191ovmpt4g 7493 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆 ∧ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2018, 19mp3an3 1452 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2120ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2215, 21eqtrd 2766 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
23 sseq1 3955 . . . . . . 7 ({(𝐼𝑥)} = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → ({(𝐼𝑥)} ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
24 sseq1 3955 . . . . . . 7 (∅ = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → (∅ ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
25 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴)
266adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2725, 26eleqtrd 2833 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2827elin1d 4151 . . . . . . . . . . . 12 ((𝜑𝐴) → ∈ (Subcat‘𝐶))
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → ∈ (Subcat‘𝐶))
3027elin2d 4152 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
31 vex 3440 . . . . . . . . . . . . . 14 ∈ V
32 fneq1 6572 . . . . . . . . . . . . . 14 (𝑗 = → (𝑗 Fn (𝑆 × 𝑆) ↔ Fn (𝑆 × 𝑆)))
3331, 32elab 3630 . . . . . . . . . . . . 13 ( ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)} ↔ Fn (𝑆 × 𝑆))
3430, 33sylib 218 . . . . . . . . . . . 12 ((𝜑𝐴) → Fn (𝑆 × 𝑆))
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → Fn (𝑆 × 𝑆))
36 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → 𝑥𝑆)
3729, 35, 36, 3subcidcl 17751 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → (𝐼𝑥) ∈ (𝑥𝑥))
3837adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑥))
39 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
4039oveq2d 7362 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥𝑥) = (𝑥𝑦))
4138, 40eleqtrd 2833 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑦))
4241snssd 4758 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼𝑥)} ⊆ (𝑥𝑦))
43 0ss 4347 . . . . . . . 8 ∅ ⊆ (𝑥𝑦)
4443a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥𝑦))
4523, 24, 42, 44ifbothda 4511 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦))
4613, 22, 45iinglb 48932 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
4746eqcomd 2737 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = 𝐴 (𝑥𝑦))
4811, 12, 47mpoeq123dva 7420 . . 3 (𝜑 → (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
491, 48eqtrid 2778 . 2 (𝜑𝐽 = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
50 eqid 2731 . . . 4 (Homf𝐶) = (Homf𝐶)
5128, 50subcssc 17747 . . 3 ((𝜑𝐴) → cat (Homf𝐶))
52 eqidd 2732 . . 3 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑧 𝐴 dom 𝐴 (𝑧)))
53 dmdm 49164 . . . 4 ( Fn (𝑆 × 𝑆) → 𝑆 = dom dom )
5434, 53syl 17 . . 3 ((𝜑𝐴) → 𝑆 = dom dom )
55 nfv 1915 . . 3 𝜑
568, 51, 52, 54, 55iinfssclem1 49165 . 2 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
5749, 56eqtr4d 2769 1 (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   ciin 4940  cmpt 5170   × cxp 5612  dom cdm 5614   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Catccat 17570  Idccid 17571  Homf chomf 17572  Subcatcsubc 17716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-pm 8753  df-ixp 8822  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-subc 17719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator