Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfconstbas Structured version   Visualization version   GIF version

Theorem iinfconstbas 49048
Description: The discrete category is the indexed intersection of all subcategories with the same base. (Contributed by Zhi Wang, 1-Nov-2025.)
Hypotheses
Ref Expression
discsubc.j 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
discsubc.b 𝐵 = (Base‘𝐶)
discsubc.i 𝐼 = (Id‘𝐶)
discsubc.s (𝜑𝑆𝐵)
discsubc.c (𝜑𝐶 ∈ Cat)
iinfconstbas.a (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
Assertion
Ref Expression
iinfconstbas (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝐼,𝑦   ,𝐽,𝑗   𝑆,,𝑗   𝐴,,𝑥,𝑦,𝑧   ,𝐼   𝑧,𝑆   𝜑,,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑗)   𝐴(𝑗)   𝐵(𝑥,𝑦,𝑧,,𝑗)   𝐶(𝑥,𝑦,𝑧,,𝑗)   𝐼(𝑧,𝑗)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem iinfconstbas
StepHypRef Expression
1 discsubc.j . . 3 𝐽 = (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2 discsubc.b . . . . . . . 8 𝐵 = (Base‘𝐶)
3 discsubc.i . . . . . . . 8 𝐼 = (Id‘𝐶)
4 discsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
5 discsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
6 iinfconstbas.a . . . . . . . 8 (𝜑𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
71, 2, 3, 4, 5, 6iinfconstbaslem 49047 . . . . . . 7 (𝜑𝐽𝐴)
87ne0d 4301 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinconst 4962 . . . . . 6 (𝐴 ≠ ∅ → 𝐴 𝑆 = 𝑆)
108, 9syl 17 . . . . 5 (𝜑 𝐴 𝑆 = 𝑆)
1110eqcomd 2735 . . . 4 (𝜑𝑆 = 𝐴 𝑆)
1211adantr 480 . . . 4 ((𝜑𝑥𝑆) → 𝑆 = 𝐴 𝑆)
137adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐽𝐴)
14 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → = 𝐽)
1514oveqd 7386 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = (𝑥𝐽𝑦))
16 snex 5386 . . . . . . . . . 10 {(𝐼𝑥)} ∈ V
17 0ex 5257 . . . . . . . . . 10 ∅ ∈ V
1816, 17ifex 4535 . . . . . . . . 9 if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V
191ovmpt4g 7516 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆 ∧ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ∈ V) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2018, 19mp3an3 1452 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2120ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝐽𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
2215, 21eqtrd 2764 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ = 𝐽) → (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
23 sseq1 3969 . . . . . . 7 ({(𝐼𝑥)} = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → ({(𝐼𝑥)} ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
24 sseq1 3969 . . . . . . 7 (∅ = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) → (∅ ⊆ (𝑥𝑦) ↔ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦)))
25 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴)
266adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴) → 𝐴 = ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2725, 26eleqtrd 2830 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ ((Subcat‘𝐶) ∩ {𝑗𝑗 Fn (𝑆 × 𝑆)}))
2827elin1d 4163 . . . . . . . . . . . 12 ((𝜑𝐴) → ∈ (Subcat‘𝐶))
2928adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → ∈ (Subcat‘𝐶))
3027elin2d 4164 . . . . . . . . . . . . 13 ((𝜑𝐴) → ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)})
31 vex 3448 . . . . . . . . . . . . . 14 ∈ V
32 fneq1 6591 . . . . . . . . . . . . . 14 (𝑗 = → (𝑗 Fn (𝑆 × 𝑆) ↔ Fn (𝑆 × 𝑆)))
3331, 32elab 3643 . . . . . . . . . . . . 13 ( ∈ {𝑗𝑗 Fn (𝑆 × 𝑆)} ↔ Fn (𝑆 × 𝑆))
3430, 33sylib 218 . . . . . . . . . . . 12 ((𝜑𝐴) → Fn (𝑆 × 𝑆))
3534adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → Fn (𝑆 × 𝑆))
36 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → 𝑥𝑆)
3729, 35, 36, 3subcidcl 17786 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → (𝐼𝑥) ∈ (𝑥𝑥))
3837adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑥))
39 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
4039oveq2d 7385 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝑥𝑥) = (𝑥𝑦))
4138, 40eleqtrd 2830 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → (𝐼𝑥) ∈ (𝑥𝑦))
4241snssd 4769 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ 𝑥 = 𝑦) → {(𝐼𝑥)} ⊆ (𝑥𝑦))
43 0ss 4359 . . . . . . . 8 ∅ ⊆ (𝑥𝑦)
4443a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) ∧ ¬ 𝑥 = 𝑦) → ∅ ⊆ (𝑥𝑦))
4523, 24, 42, 44ifbothda 4523 . . . . . 6 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ 𝐴) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) ⊆ (𝑥𝑦))
4613, 22, 45iinglb 48803 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 (𝑥𝑦) = if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅))
4746eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅) = 𝐴 (𝑥𝑦))
4811, 12, 47mpoeq123dva 7443 . . 3 (𝜑 → (𝑥𝑆, 𝑦𝑆 ↦ if(𝑥 = 𝑦, {(𝐼𝑥)}, ∅)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
491, 48eqtrid 2776 . 2 (𝜑𝐽 = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
50 eqid 2729 . . . 4 (Homf𝐶) = (Homf𝐶)
5128, 50subcssc 17782 . . 3 ((𝜑𝐴) → cat (Homf𝐶))
52 eqidd 2730 . . 3 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑧 𝐴 dom 𝐴 (𝑧)))
53 dmdm 49035 . . . 4 ( Fn (𝑆 × 𝑆) → 𝑆 = dom dom )
5434, 53syl 17 . . 3 ((𝜑𝐴) → 𝑆 = dom dom )
55 nfv 1914 . . 3 𝜑
568, 51, 52, 54, 55iinfssclem1 49036 . 2 (𝜑 → (𝑧 𝐴 dom 𝐴 (𝑧)) = (𝑥 𝐴 𝑆, 𝑦 𝐴 𝑆 𝐴 (𝑥𝑦)))
5749, 56eqtr4d 2767 1 (𝜑𝐽 = (𝑧 𝐴 dom 𝐴 (𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  Vcvv 3444  cin 3910  wss 3911  c0 4292  ifcif 4484  {csn 4585   ciin 4952  cmpt 5183   × cxp 5629  dom cdm 5631   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Catccat 17605  Idccid 17606  Homf chomf 17607  Subcatcsubc 17751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-pm 8779  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-ssc 17752  df-subc 17754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator