| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version | ||
| Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | 1 | ssiinf 5018 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 ⊆ wss 3914 ∩ ciin 4956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-v 3449 df-ss 3931 df-iin 4958 |
| This theorem is referenced by: triin 5231 cflim2 10216 ptbasfi 23468 limciun 25795 clsint2 36317 fnemeet2 36355 dihglblem4 41291 dihglblem6 41334 iooiinicc 45540 iooiinioc 45554 iinhoiicc 46672 smfsuplem1 46809 iinglb 48807 iineqconst2 48809 |
| Copyright terms: Public domain | W3C validator |