Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2900 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ssiinf 4950 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∀wral 3054 ⊆ wss 3853 ∩ ciin 4892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-v 3402 df-in 3860 df-ss 3870 df-iin 4894 |
This theorem is referenced by: triin 5161 cflim2 9775 ptbasfi 22344 limciun 24658 clsint2 34173 fnemeet2 34211 dihglblem4 38966 dihglblem6 39009 iooiinicc 42660 iooiinioc 42674 iinhoiicc 43794 smfsuplem1 43923 |
Copyright terms: Public domain | W3C validator |