MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiin Structured version   Visualization version   GIF version

Theorem ssiin 5058
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2902 . 2 𝑥𝐶
21ssiinf 5057 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3060  wss 3948   ciin 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965  df-iin 5000
This theorem is referenced by:  triin  5282  cflim2  10264  ptbasfi  23318  limciun  25656  clsint2  35530  fnemeet2  35568  dihglblem4  40484  dihglblem6  40527  iooiinicc  44566  iooiinioc  44580  iinhoiicc  45701  smfsuplem1  45838
  Copyright terms: Public domain W3C validator