MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiin Structured version   Visualization version   GIF version

Theorem ssiin 5078
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2908 . 2 𝑥𝐶
21ssiinf 5077 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3067  wss 3976   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-v 3490  df-ss 3993  df-iin 5018
This theorem is referenced by:  triin  5300  cflim2  10332  ptbasfi  23610  limciun  25949  clsint2  36295  fnemeet2  36333  dihglblem4  41254  dihglblem6  41297  iooiinicc  45460  iooiinioc  45474  iinhoiicc  46595  smfsuplem1  46732
  Copyright terms: Public domain W3C validator