MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiin Structured version   Visualization version   GIF version

Theorem ssiin 4951
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2900 . 2 𝑥𝐶
21ssiinf 4950 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wral 3054  wss 3853   ciin 4892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-v 3402  df-in 3860  df-ss 3870  df-iin 4894
This theorem is referenced by:  triin  5161  cflim2  9775  ptbasfi  22344  limciun  24658  clsint2  34173  fnemeet2  34211  dihglblem4  38966  dihglblem6  39009  iooiinicc  42660  iooiinioc  42674  iinhoiicc  43794  smfsuplem1  43923
  Copyright terms: Public domain W3C validator