Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ssiinf 4980 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3063 ⊆ wss 3883 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-iin 4924 |
This theorem is referenced by: triin 5202 cflim2 9950 ptbasfi 22640 limciun 24963 clsint2 34445 fnemeet2 34483 dihglblem4 39238 dihglblem6 39281 iooiinicc 42970 iooiinioc 42984 iinhoiicc 44102 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |