| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version | ||
| Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | 1 | ssiinf 5035 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3052 ⊆ wss 3931 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-v 3466 df-ss 3948 df-iin 4975 |
| This theorem is referenced by: triin 5251 cflim2 10282 ptbasfi 23524 limciun 25852 clsint2 36352 fnemeet2 36390 dihglblem4 41321 dihglblem6 41364 iooiinicc 45538 iooiinioc 45552 iinhoiicc 46670 smfsuplem1 46807 iinglb 48767 iineqconst2 48769 |
| Copyright terms: Public domain | W3C validator |