MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss1 Structured version   Visualization version   GIF version

Theorem iinss1 4939
Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1 (𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssralv 3987 . . 3 (𝐴𝐵 → (∀𝑥𝐵 𝑦𝐶 → ∀𝑥𝐴 𝑦𝐶))
2 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
32elv 3438 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝑦𝐶)
4 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
54elv 3438 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
61, 3, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑦 𝑥𝐵 𝐶𝑦 𝑥𝐴 𝐶))
76ssrdv 3927 1 (𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3064  Vcvv 3432  wss 3887   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-iin 4927
This theorem is referenced by:  polcon3N  37931  smflimsuplem5  44357  smflimsuplem7  44359
  Copyright terms: Public domain W3C validator