![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
iinss1 | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4064 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | eliin 5001 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
3 | 2 | elv 3483 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) |
4 | eliin 5001 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
5 | 4 | elv 3483 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
6 | 1, 3, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
7 | 6 | ssrdv 4001 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-ss 3980 df-iin 4999 |
This theorem is referenced by: polcon3N 39900 smflimsuplem5 46780 smflimsuplem7 46782 |
Copyright terms: Public domain | W3C validator |