![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss1 | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4078 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
3 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
4 | 1, 2, 3 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
5 | 4 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: iuneq1 5031 iunxdif2 5076 oelim2 8651 fsumiun 15869 ovolfiniun 25555 uniioovol 25633 fusgreghash2wspv 30367 ssdifidllem 33449 esum2dlem 34056 esum2d 34057 carsgclctunlem2 34284 bnj1413 35011 bnj1408 35012 volsupnfl 37625 corclrcl 43669 cotrcltrcl 43687 iuneqfzuzlem 45249 fsumiunss 45496 sge0iunmptlemfi 46334 sge0iunmptlemre 46336 carageniuncllem1 46442 carageniuncllem2 46443 caratheodorylem2 46448 ovnsubaddlem1 46491 |
Copyright terms: Public domain | W3C validator |