MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Visualization version   GIF version

Theorem iunss1 4966
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iunss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrexv 4013 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦𝐶 → ∃𝑥𝐵 𝑦𝐶))
2 eliun 4955 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4955 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
41, 2, 33imtr4g 296 . 2 (𝐴𝐵 → (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
54ssrdv 3949 1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3053  wss 3911   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-ss 3928  df-iun 4953
This theorem is referenced by:  iuneq1  4968  iunxdif2  5012  oelim2  8536  fsumiun  15763  ovolfiniun  25435  uniioovol  25513  fusgreghash2wspv  30314  ssdifidllem  33420  esum2dlem  34075  esum2d  34076  carsgclctunlem2  34303  bnj1413  35018  bnj1408  35019  volsupnfl  37652  corclrcl  43689  cotrcltrcl  43707  iuneqfzuzlem  45323  fsumiunss  45566  sge0iunmptlemfi  46404  sge0iunmptlemre  46406  carageniuncllem1  46512  carageniuncllem2  46513  caratheodorylem2  46518  ovnsubaddlem1  46561
  Copyright terms: Public domain W3C validator