| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunss1 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunss1 | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4028 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 5 | 4 | ssrdv 3964 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iuneq1 4984 iunxdif2 5029 oelim2 8605 fsumiun 15835 ovolfiniun 25452 uniioovol 25530 fusgreghash2wspv 30262 ssdifidllem 33417 esum2dlem 34069 esum2d 34070 carsgclctunlem2 34297 bnj1413 35012 bnj1408 35013 volsupnfl 37635 corclrcl 43678 cotrcltrcl 43696 iuneqfzuzlem 45309 fsumiunss 45552 sge0iunmptlemfi 46390 sge0iunmptlemre 46392 carageniuncllem1 46498 carageniuncllem2 46499 caratheodorylem2 46504 ovnsubaddlem1 46547 |
| Copyright terms: Public domain | W3C validator |