MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Visualization version   GIF version

Theorem iunss1 4966
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iunss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrexv 4013 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦𝐶 → ∃𝑥𝐵 𝑦𝐶))
2 eliun 4955 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4955 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
41, 2, 33imtr4g 296 . 2 (𝐴𝐵 → (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
54ssrdv 3949 1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3053  wss 3911   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-ss 3928  df-iun 4953
This theorem is referenced by:  iuneq1  4968  iunxdif2  5012  oelim2  8536  fsumiun  15764  ovolfiniun  25436  uniioovol  25514  fusgreghash2wspv  30315  ssdifidllem  33421  esum2dlem  34076  esum2d  34077  carsgclctunlem2  34304  bnj1413  35019  bnj1408  35020  volsupnfl  37653  corclrcl  43690  cotrcltrcl  43708  iuneqfzuzlem  45324  fsumiunss  45567  sge0iunmptlemfi  46405  sge0iunmptlemre  46407  carageniuncllem1  46513  carageniuncllem2  46514  caratheodorylem2  46519  ovnsubaddlem1  46562
  Copyright terms: Public domain W3C validator