| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunss1 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunss1 | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 3999 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 5 | 4 | ssrdv 3935 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4941 |
| This theorem is referenced by: iuneq1 4956 iunxdif2 5000 oelim2 8510 fsumiun 15728 ovolfiniun 25429 uniioovol 25507 fusgreghash2wspv 30315 ssdifidllem 33421 esum2dlem 34105 esum2d 34106 carsgclctunlem2 34332 bnj1413 35047 bnj1408 35048 volsupnfl 37704 corclrcl 43799 cotrcltrcl 43817 iuneqfzuzlem 45432 fsumiunss 45674 sge0iunmptlemfi 46510 sge0iunmptlemre 46512 carageniuncllem1 46618 carageniuncllem2 46619 caratheodorylem2 46624 ovnsubaddlem1 46667 |
| Copyright terms: Public domain | W3C validator |