| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunss1 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunss1 | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4019 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 5 | 4 | ssrdv 3955 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iuneq1 4975 iunxdif2 5020 oelim2 8562 fsumiun 15794 ovolfiniun 25409 uniioovol 25487 fusgreghash2wspv 30271 ssdifidllem 33434 esum2dlem 34089 esum2d 34090 carsgclctunlem2 34317 bnj1413 35032 bnj1408 35033 volsupnfl 37666 corclrcl 43703 cotrcltrcl 43721 iuneqfzuzlem 45337 fsumiunss 45580 sge0iunmptlemfi 46418 sge0iunmptlemre 46420 carageniuncllem1 46526 carageniuncllem2 46527 caratheodorylem2 46532 ovnsubaddlem1 46575 |
| Copyright terms: Public domain | W3C validator |