MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Visualization version   GIF version

Theorem iunss1 4982
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iunss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrexv 4028 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦𝐶 → ∃𝑥𝐵 𝑦𝐶))
2 eliun 4971 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4971 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
41, 2, 33imtr4g 296 . 2 (𝐴𝐵 → (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
54ssrdv 3964 1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3060  wss 3926   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061  df-v 3461  df-ss 3943  df-iun 4969
This theorem is referenced by:  iuneq1  4984  iunxdif2  5029  oelim2  8605  fsumiun  15835  ovolfiniun  25452  uniioovol  25530  fusgreghash2wspv  30262  ssdifidllem  33417  esum2dlem  34069  esum2d  34070  carsgclctunlem2  34297  bnj1413  35012  bnj1408  35013  volsupnfl  37635  corclrcl  43678  cotrcltrcl  43696  iuneqfzuzlem  45309  fsumiunss  45552  sge0iunmptlemfi  46390  sge0iunmptlemre  46392  carageniuncllem1  46498  carageniuncllem2  46499  caratheodorylem2  46504  ovnsubaddlem1  46547
  Copyright terms: Public domain W3C validator