![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon3N | Structured version Visualization version GIF version |
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polcon3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1174 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
2 | iinss1 4753 | . . 3 ⊢ (𝑋 ⊆ 𝑌 → ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) | |
3 | sslin 4063 | . . 3 ⊢ (∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
5 | eqid 2825 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2825 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
9 | 5, 6, 7, 8 | polvalN 35980 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
10 | 9 | 3adant3 1168 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
11 | simp1 1172 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
12 | simp2 1173 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝐴) | |
13 | 1, 12 | sstrd 3837 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝐴) |
14 | 5, 6, 7, 8 | polvalN 35980 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
15 | 11, 13, 14 | syl2anc 581 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
16 | 4, 10, 15 | 3sstr4d 3873 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∩ cin 3797 ⊆ wss 3798 ∩ ciin 4741 ‘cfv 6123 occoc 16313 Atomscatm 35338 HLchlt 35425 pmapcpmap 35572 ⊥𝑃cpolN 35977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-polarityN 35978 |
This theorem is referenced by: 2polcon4bN 35993 polcon2N 35994 paddunN 36002 |
Copyright terms: Public domain | W3C validator |