Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon3N Structured version   Visualization version   GIF version

Theorem polcon3N 40026
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon3N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))

Proof of Theorem polcon3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑋𝑌)
2 iinss1 4955 . . 3 (𝑋𝑌 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))
3 sslin 4190 . . 3 ( 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
41, 2, 33syl 18 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
5 eqid 2731 . . . 4 (oc‘𝐾) = (oc‘𝐾)
6 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
7 eqid 2731 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
8 2polss.p . . . 4 = (⊥𝑃𝐾)
95, 6, 7, 8polvalN 40014 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) = (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
1093adant3 1132 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) = (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
11 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝐾 ∈ HL)
12 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑌𝐴)
131, 12sstrd 3940 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑋𝐴)
145, 6, 7, 8polvalN 40014 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
1511, 13, 14syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑋) = (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
164, 10, 153sstr4d 3985 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897   ciin 4940  cfv 6481  occoc 17169  Atomscatm 39372  HLchlt 39459  pmapcpmap 39606  𝑃cpolN 40011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-polarityN 40012
This theorem is referenced by:  2polcon4bN  40027  polcon2N  40028  paddunN  40036
  Copyright terms: Public domain W3C validator