| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon3N | Structured version Visualization version GIF version | ||
| Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polcon3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
| 2 | iinss1 4955 | . . 3 ⊢ (𝑋 ⊆ 𝑌 → ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) | |
| 3 | sslin 4190 | . . 3 ⊢ (∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 5 | eqid 2731 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 6 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2731 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 8 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 9 | 5, 6, 7, 8 | polvalN 40014 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 10 | 9 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 11 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
| 12 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝐴) | |
| 13 | 1, 12 | sstrd 3940 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝐴) |
| 14 | 5, 6, 7, 8 | polvalN 40014 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 15 | 11, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
| 16 | 4, 10, 15 | 3sstr4d 3985 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ∩ ciin 4940 ‘cfv 6481 occoc 17169 Atomscatm 39372 HLchlt 39459 pmapcpmap 39606 ⊥𝑃cpolN 40011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-polarityN 40012 |
| This theorem is referenced by: 2polcon4bN 40027 polcon2N 40028 paddunN 40036 |
| Copyright terms: Public domain | W3C validator |