Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polcon3N Structured version   Visualization version   GIF version

Theorem polcon3N 39900
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a 𝐴 = (Atoms‘𝐾)
2polss.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polcon3N ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))

Proof of Theorem polcon3N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑋𝑌)
2 iinss1 5012 . . 3 (𝑋𝑌 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))
3 sslin 4251 . . 3 ( 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
41, 2, 33syl 18 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
5 eqid 2735 . . . 4 (oc‘𝐾) = (oc‘𝐾)
6 2polss.a . . . 4 𝐴 = (Atoms‘𝐾)
7 eqid 2735 . . . 4 (pmap‘𝐾) = (pmap‘𝐾)
8 2polss.p . . . 4 = (⊥𝑃𝐾)
95, 6, 7, 8polvalN 39888 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) = (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
1093adant3 1131 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) = (𝐴 𝑝𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
11 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝐾 ∈ HL)
12 simp2 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑌𝐴)
131, 12sstrd 4006 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → 𝑋𝐴)
145, 6, 7, 8polvalN 39888 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
1511, 13, 14syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑋) = (𝐴 𝑝𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))))
164, 10, 153sstr4d 4043 1 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cin 3962  wss 3963   ciin 4997  cfv 6563  occoc 17306  Atomscatm 39245  HLchlt 39332  pmapcpmap 39480  𝑃cpolN 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-polarityN 39886
This theorem is referenced by:  2polcon4bN  39901  polcon2N  39902  paddunN  39910
  Copyright terms: Public domain W3C validator