Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon3N | Structured version Visualization version GIF version |
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polcon3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1140 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
2 | iinss1 4919 | . . 3 ⊢ (𝑋 ⊆ 𝑌 → ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) | |
3 | sslin 4149 | . . 3 ⊢ (∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
5 | eqid 2737 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2737 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
9 | 5, 6, 7, 8 | polvalN 37656 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
10 | 9 | 3adant3 1134 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
11 | simp1 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
12 | simp2 1139 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝐴) | |
13 | 1, 12 | sstrd 3911 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝐴) |
14 | 5, 6, 7, 8 | polvalN 37656 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
15 | 11, 13, 14 | syl2anc 587 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
16 | 4, 10, 15 | 3sstr4d 3948 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ⊆ wss 3866 ∩ ciin 4905 ‘cfv 6380 occoc 16810 Atomscatm 37014 HLchlt 37101 pmapcpmap 37248 ⊥𝑃cpolN 37653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-polarityN 37654 |
This theorem is referenced by: 2polcon4bN 37669 polcon2N 37670 paddunN 37678 |
Copyright terms: Public domain | W3C validator |