![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polcon3N | Structured version Visualization version GIF version |
Description: Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polss.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polcon3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
2 | iinss1 5012 | . . 3 ⊢ (𝑋 ⊆ 𝑌 → ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) | |
3 | sslin 4251 | . . 3 ⊢ (∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) ⊆ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝))) ⊆ (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
5 | eqid 2735 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
6 | 2polss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2735 | . . . 4 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | 2polss.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
9 | 5, 6, 7, 8 | polvalN 39888 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
10 | 9 | 3adant3 1131 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑌 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
11 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
12 | simp2 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ 𝐴) | |
13 | 1, 12 | sstrd 4006 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝐴) |
14 | 5, 6, 7, 8 | polvalN 39888 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
15 | 11, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 ((pmap‘𝐾)‘((oc‘𝐾)‘𝑝)))) |
16 | 4, 10, 15 | 3sstr4d 4043 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∩ ciin 4997 ‘cfv 6563 occoc 17306 Atomscatm 39245 HLchlt 39332 pmapcpmap 39480 ⊥𝑃cpolN 39885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-polarityN 39886 |
This theorem is referenced by: 2polcon4bN 39901 polcon2N 39902 paddunN 39910 |
Copyright terms: Public domain | W3C validator |