Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 43455
Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a 𝑛𝜑
smflimsuplem5.b 𝑚𝜑
smflimsuplem5.m (𝜑𝑀 ∈ ℤ)
smflimsuplem5.z 𝑍 = (ℤ𝑀)
smflimsuplem5.s (𝜑𝑆 ∈ SAlg)
smflimsuplem5.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem5.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem5.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem5.n (𝜑𝑁𝑍)
smflimsuplem5.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 𝑛𝜑
2 smflimsuplem5.n . . . . . . . 8 (𝜑𝑁𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
43eleq2i 2881 . . . . . . . . . . 11 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 219 . . . . . . . . . 10 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 uzss 12253 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
75, 6syl 17 . . . . . . . . 9 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
87, 3sseqtrrdi 3966 . . . . . . . 8 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
92, 8syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
109sselda 3915 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 nfcv 2955 . . . . . . . . . . 11 𝑥𝑍
13 nfrab1 3337 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 5127 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2953 . . . . . . . . 9 𝑥𝐸
16 nfcv 2955 . . . . . . . . 9 𝑥𝑛
1715, 16nffv 6655 . . . . . . . 8 𝑥(𝐸𝑛)
18 fvex 6658 . . . . . . . 8 (𝐸𝑛) ∈ V
1917, 18mptexf 41873 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2221fvmpt2 6756 . . . . . 6 ((𝑛𝑍 ∧ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2310, 20, 22syl2anc 587 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2423fveq1d 6647 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋))
25 nfcv 2955 . . . . . 6 𝑦(𝐸𝑛)
26 nfcv 2955 . . . . . 6 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
27 nfcv 2955 . . . . . 6 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
28 fveq2 6645 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2928mpteq2dv 5126 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3029rneqd 5772 . . . . . . 7 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3130supeq1d 8894 . . . . . 6 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 5129 . . . . 5 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
33 simpl 486 . . . . . . . . 9 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑋)
3433fveq2d 6649 . . . . . . . 8 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
3534mpteq2dva 5125 . . . . . . 7 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3635rneqd 5772 . . . . . 6 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3736supeq1d 8894 . . . . 5 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
3837eleq1d 2874 . . . . . . . 8 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
39 uzss 12253 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ⊆ (ℤ𝑁))
40 iinss1 4896 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4241adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
43 smflimsuplem5.x . . . . . . . . . 10 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4443adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4542, 44sseldd 3916 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
46 smflimsuplem5.b . . . . . . . . . . 11 𝑚𝜑
47 nfv 1915 . . . . . . . . . . 11 𝑚 𝑛 ∈ (ℤ𝑁)
4846, 47nfan 1900 . . . . . . . . . 10 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
49 eqid 2798 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
50 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
5139sselda 3915 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
5251adantll 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
5453adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
55 simpl 486 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝜑)
569sselda 3915 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5857ffvelrnda 6828 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
5955, 56, 58syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
60 eqid 2798 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
6154, 59, 60smff 43366 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
62 eliin 4886 . . . . . . . . . . . . . . . 16 (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6443, 63mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
6564adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
66 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
67 rspa 3171 . . . . . . . . . . . . 13 ((∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6865, 66, 67syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6961, 68ffvelrnd 6829 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
7050, 52, 69syl2anc 587 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
71 eluzelz 12241 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
7271adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
7473adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
75 fvex 6658 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑋) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 42371 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
7978adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8077, 79eqeltrd 2890 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8180renepnfd 10681 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
8248, 49, 70, 81limsupubuzmpt 42361 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
83 uzid2 42042 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ (ℤ𝑛))
8483ne0d 4251 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ≠ ∅)
8584adantl 485 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑛) ≠ ∅)
8648, 85, 70supxrre3rnmpt 42066 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
8782, 86mpbird 260 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
8838, 45, 87elrabd 3630 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
89 simpl 486 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑥)
9089fveq2d 6649 . . . . . . . . . . . 12 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑥))
9190mpteq2dva 5125 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9291rneqd 5772 . . . . . . . . . 10 (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9392supeq1d 8894 . . . . . . . . 9 (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9493eleq1d 2874 . . . . . . . 8 (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
9594cbvrabv 3439 . . . . . . 7 {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
9688, 95eleqtrdi 2900 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
97 eqid 2798 . . . . . . . 8 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
98 fvex 6658 . . . . . . . . . . . . 13 (𝐹𝑚) ∈ V
9998dmex 7598 . . . . . . . . . . . 12 dom (𝐹𝑚) ∈ V
10099rgenw 3118 . . . . . . . . . . 11 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
101100a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10284, 101iinexd 41769 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
103102adantl 485 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10497, 103rabexd 5200 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10511fvmpt2 6756 . . . . . . 7 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10610, 104, 105syl2anc 587 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10796, 106eleqtrrd 2893 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ (𝐸𝑛))
10832, 37, 107, 87fvmptd3 6768 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
10924, 108eqtrd 2833 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
1101, 109mpteq2da 5124 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )))
1113eluzelz2 42040 . . . 4 (𝑁𝑍𝑁 ∈ ℤ)
1122, 111syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
113 eqid 2798 . . 3 (ℤ𝑁) = (ℤ𝑁)
11475a1i 11 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ V)
11575a1i 11 . . . . 5 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
11646, 112, 73, 113, 3, 114, 115limsupequzmpt 42371 . . . 4 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
117116, 78eqeltrd 2890 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
11846, 112, 113, 69, 117supcnvlimsupmpt 42383 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
119110, 118eqbrtrd 5052 1 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243   ciin 4882   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  wf 6320  cfv 6324  supcsup 8888  cr 10525  *cxr 10663   < clt 10664  cle 10665  cz 11969  cuz 12231  lim supclsp 14819  cli 14833  SAlgcsalg 42950  SMblFncsmblfn 43334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fl 13157  df-ceil 13158  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-smblfn 43335
This theorem is referenced by:  smflimsuplem6  43456  smflimsuplem8  43458
  Copyright terms: Public domain W3C validator