Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 46745
Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a 𝑛𝜑
smflimsuplem5.b 𝑚𝜑
smflimsuplem5.m (𝜑𝑀 ∈ ℤ)
smflimsuplem5.z 𝑍 = (ℤ𝑀)
smflimsuplem5.s (𝜑𝑆 ∈ SAlg)
smflimsuplem5.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem5.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem5.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem5.n (𝜑𝑁𝑍)
smflimsuplem5.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 𝑛𝜑
2 smflimsuplem5.n . . . . . . . 8 (𝜑𝑁𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
43eleq2i 2836 . . . . . . . . . . 11 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 216 . . . . . . . . . 10 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 uzss 12926 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
75, 6syl 17 . . . . . . . . 9 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
87, 3sseqtrrdi 4060 . . . . . . . 8 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
92, 8syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
109sselda 4008 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 nfcv 2908 . . . . . . . . . . 11 𝑥𝑍
13 nfrab1 3464 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 5273 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2906 . . . . . . . . 9 𝑥𝐸
16 nfcv 2908 . . . . . . . . 9 𝑥𝑛
1715, 16nffv 6930 . . . . . . . 8 𝑥(𝐸𝑛)
18 fvex 6933 . . . . . . . 8 (𝐸𝑛) ∈ V
1917, 18mptexf 45145 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2221fvmpt2 7040 . . . . . 6 ((𝑛𝑍 ∧ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2310, 20, 22syl2anc 583 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2423fveq1d 6922 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋))
25 nfcv 2908 . . . . . 6 𝑦(𝐸𝑛)
26 nfcv 2908 . . . . . 6 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
27 nfcv 2908 . . . . . 6 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
28 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2928mpteq2dv 5268 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3029rneqd 5963 . . . . . . 7 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3130supeq1d 9515 . . . . . 6 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 5275 . . . . 5 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
33 simpl 482 . . . . . . . . 9 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑋)
3433fveq2d 6924 . . . . . . . 8 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
3534mpteq2dva 5266 . . . . . . 7 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3635rneqd 5963 . . . . . 6 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3736supeq1d 9515 . . . . 5 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
3837eleq1d 2829 . . . . . . . 8 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
39 uzss 12926 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ⊆ (ℤ𝑁))
40 iinss1 5030 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4241adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
43 smflimsuplem5.x . . . . . . . . . 10 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4443adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4542, 44sseldd 4009 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
46 smflimsuplem5.b . . . . . . . . . . 11 𝑚𝜑
47 nfv 1913 . . . . . . . . . . 11 𝑚 𝑛 ∈ (ℤ𝑁)
4846, 47nfan 1898 . . . . . . . . . 10 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
49 eqid 2740 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
50 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
5139sselda 4008 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
5251adantll 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
5453adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝜑)
569sselda 4008 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5857ffvelcdmda 7118 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
5955, 56, 58syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
60 eqid 2740 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
6154, 59, 60smff 46653 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
62 eliin 5020 . . . . . . . . . . . . . . . 16 (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6443, 63mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
6564adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
66 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
67 rspa 3254 . . . . . . . . . . . . 13 ((∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6865, 66, 67syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6961, 68ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
7050, 52, 69syl2anc 583 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
71 eluzelz 12913 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
7271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
75 fvex 6933 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑋) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 45650 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8077, 79eqeltrd 2844 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8180renepnfd 11341 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
8248, 49, 70, 81limsupubuzmpt 45640 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
83 uzid2 45320 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ (ℤ𝑛))
8483ne0d 4365 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ≠ ∅)
8584adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑛) ≠ ∅)
8648, 85, 70supxrre3rnmpt 45344 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
8782, 86mpbird 257 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
8838, 45, 87elrabd 3710 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
89 simpl 482 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑥)
9089fveq2d 6924 . . . . . . . . . . . 12 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑥))
9190mpteq2dva 5266 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9291rneqd 5963 . . . . . . . . . 10 (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9392supeq1d 9515 . . . . . . . . 9 (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9493eleq1d 2829 . . . . . . . 8 (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
9594cbvrabv 3454 . . . . . . 7 {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
9688, 95eleqtrdi 2854 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
97 eqid 2740 . . . . . . . 8 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
98 fvex 6933 . . . . . . . . . . . . 13 (𝐹𝑚) ∈ V
9998dmex 7949 . . . . . . . . . . . 12 dom (𝐹𝑚) ∈ V
10099rgenw 3071 . . . . . . . . . . 11 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
101100a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10284, 101iinexd 45035 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
103102adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10497, 103rabexd 5358 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10511fvmpt2 7040 . . . . . . 7 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10610, 104, 105syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10796, 106eleqtrrd 2847 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ (𝐸𝑛))
10832, 37, 107, 87fvmptd3 7052 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
10924, 108eqtrd 2780 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
1101, 109mpteq2da 5264 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )))
1113eluzelz2 45318 . . . 4 (𝑁𝑍𝑁 ∈ ℤ)
1122, 111syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
113 eqid 2740 . . 3 (ℤ𝑁) = (ℤ𝑁)
11475a1i 11 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ V)
11575a1i 11 . . . . 5 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
11646, 112, 73, 113, 3, 114, 115limsupequzmpt 45650 . . . 4 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
117116, 78eqeltrd 2844 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
11846, 112, 113, 69, 117supcnvlimsupmpt 45662 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
119110, 118eqbrtrd 5188 1 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  wf 6569  cfv 6573  supcsup 9509  cr 11183  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  lim supclsp 15516  cli 15530  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-fz 13568  df-fl 13843  df-ceil 13844  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-smblfn 46617
This theorem is referenced by:  smflimsuplem6  46746  smflimsuplem8  46748
  Copyright terms: Public domain W3C validator