Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 44244
Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a 𝑛𝜑
smflimsuplem5.b 𝑚𝜑
smflimsuplem5.m (𝜑𝑀 ∈ ℤ)
smflimsuplem5.z 𝑍 = (ℤ𝑀)
smflimsuplem5.s (𝜑𝑆 ∈ SAlg)
smflimsuplem5.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem5.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem5.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem5.n (𝜑𝑁𝑍)
smflimsuplem5.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 𝑛𝜑
2 smflimsuplem5.n . . . . . . . 8 (𝜑𝑁𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
43eleq2i 2830 . . . . . . . . . . 11 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 215 . . . . . . . . . 10 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 uzss 12534 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
75, 6syl 17 . . . . . . . . 9 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
87, 3sseqtrrdi 3968 . . . . . . . 8 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
92, 8syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
109sselda 3917 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 nfcv 2906 . . . . . . . . . . 11 𝑥𝑍
13 nfrab1 3310 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 5177 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2904 . . . . . . . . 9 𝑥𝐸
16 nfcv 2906 . . . . . . . . 9 𝑥𝑛
1715, 16nffv 6766 . . . . . . . 8 𝑥(𝐸𝑛)
18 fvex 6769 . . . . . . . 8 (𝐸𝑛) ∈ V
1917, 18mptexf 42670 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2221fvmpt2 6868 . . . . . 6 ((𝑛𝑍 ∧ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2310, 20, 22syl2anc 583 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2423fveq1d 6758 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋))
25 nfcv 2906 . . . . . 6 𝑦(𝐸𝑛)
26 nfcv 2906 . . . . . 6 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
27 nfcv 2906 . . . . . 6 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
28 fveq2 6756 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2928mpteq2dv 5172 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3029rneqd 5836 . . . . . . 7 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3130supeq1d 9135 . . . . . 6 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 5179 . . . . 5 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
33 simpl 482 . . . . . . . . 9 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑋)
3433fveq2d 6760 . . . . . . . 8 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
3534mpteq2dva 5170 . . . . . . 7 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3635rneqd 5836 . . . . . 6 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3736supeq1d 9135 . . . . 5 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
3837eleq1d 2823 . . . . . . . 8 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
39 uzss 12534 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ⊆ (ℤ𝑁))
40 iinss1 4936 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4241adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
43 smflimsuplem5.x . . . . . . . . . 10 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4443adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4542, 44sseldd 3918 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
46 smflimsuplem5.b . . . . . . . . . . 11 𝑚𝜑
47 nfv 1918 . . . . . . . . . . 11 𝑚 𝑛 ∈ (ℤ𝑁)
4846, 47nfan 1903 . . . . . . . . . 10 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
49 eqid 2738 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
50 simpll 763 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
5139sselda 3917 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
5251adantll 710 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
5453adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝜑)
569sselda 3917 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5857ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
5955, 56, 58syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
60 eqid 2738 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
6154, 59, 60smff 44155 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
62 eliin 4926 . . . . . . . . . . . . . . . 16 (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6443, 63mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
6564adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
66 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
67 rspa 3130 . . . . . . . . . . . . 13 ((∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6865, 66, 67syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6961, 68ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
7050, 52, 69syl2anc 583 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
71 eluzelz 12521 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
7271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
75 fvex 6769 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑋) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 43160 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8077, 79eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8180renepnfd 10957 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
8248, 49, 70, 81limsupubuzmpt 43150 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
83 uzid2 42835 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ (ℤ𝑛))
8483ne0d 4266 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ≠ ∅)
8584adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑛) ≠ ∅)
8648, 85, 70supxrre3rnmpt 42859 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
8782, 86mpbird 256 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
8838, 45, 87elrabd 3619 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
89 simpl 482 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑥)
9089fveq2d 6760 . . . . . . . . . . . 12 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑥))
9190mpteq2dva 5170 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9291rneqd 5836 . . . . . . . . . 10 (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9392supeq1d 9135 . . . . . . . . 9 (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9493eleq1d 2823 . . . . . . . 8 (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
9594cbvrabv 3416 . . . . . . 7 {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
9688, 95eleqtrdi 2849 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
97 eqid 2738 . . . . . . . 8 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
98 fvex 6769 . . . . . . . . . . . . 13 (𝐹𝑚) ∈ V
9998dmex 7732 . . . . . . . . . . . 12 dom (𝐹𝑚) ∈ V
10099rgenw 3075 . . . . . . . . . . 11 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
101100a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10284, 101iinexd 42571 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
103102adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10497, 103rabexd 5252 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10511fvmpt2 6868 . . . . . . 7 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10610, 104, 105syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10796, 106eleqtrrd 2842 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ (𝐸𝑛))
10832, 37, 107, 87fvmptd3 6880 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
10924, 108eqtrd 2778 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
1101, 109mpteq2da 5168 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )))
1113eluzelz2 42833 . . . 4 (𝑁𝑍𝑁 ∈ ℤ)
1122, 111syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
113 eqid 2738 . . 3 (ℤ𝑁) = (ℤ𝑁)
11475a1i 11 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ V)
11575a1i 11 . . . . 5 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
11646, 112, 73, 113, 3, 114, 115limsupequzmpt 43160 . . . 4 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
117116, 78eqeltrd 2839 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
11846, 112, 113, 69, 117supcnvlimsupmpt 43172 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
119110, 118eqbrtrd 5092 1 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   ciin 4922   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  supcsup 9129  cr 10801  *cxr 10939   < clt 10940  cle 10941  cz 12249  cuz 12511  lim supclsp 15107  cli 15121  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fl 13440  df-ceil 13441  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-smblfn 44124
This theorem is referenced by:  smflimsuplem6  44245  smflimsuplem8  44247
  Copyright terms: Public domain W3C validator