Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 45838
Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a β„²π‘›πœ‘
smflimsuplem5.b β„²π‘šπœ‘
smflimsuplem5.m (πœ‘ β†’ 𝑀 ∈ β„€)
smflimsuplem5.z 𝑍 = (β„€β‰₯β€˜π‘€)
smflimsuplem5.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smflimsuplem5.f (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
smflimsuplem5.e 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
smflimsuplem5.r (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
smflimsuplem5.n (πœ‘ β†’ 𝑁 ∈ 𝑍)
smflimsuplem5.x (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š))
Assertion
Ref Expression
smflimsuplem5 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘) ↦ ((π»β€˜π‘›)β€˜π‘‹)) ⇝ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
Distinct variable groups:   𝑛,𝐹,π‘₯   π‘š,𝑀   π‘š,𝑁,𝑛   π‘š,𝑋,𝑛   π‘š,𝑍,𝑛,π‘₯
Allowed substitution hints:   πœ‘(π‘₯,π‘š,𝑛)   𝑆(π‘₯,π‘š,𝑛)   𝐸(π‘₯,π‘š,𝑛)   𝐹(π‘š)   𝐻(π‘₯,π‘š,𝑛)   𝑀(π‘₯,𝑛)   𝑁(π‘₯)   𝑋(π‘₯)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 β„²π‘›πœ‘
2 smflimsuplem5.n . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ 𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (β„€β‰₯β€˜π‘€)
43eleq2i 2823 . . . . . . . . . . 11 (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
54biimpi 215 . . . . . . . . . 10 (𝑁 ∈ 𝑍 β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
6 uzss 12849 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜π‘€))
75, 6syl 17 . . . . . . . . 9 (𝑁 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜π‘€))
87, 3sseqtrrdi 4032 . . . . . . . 8 (𝑁 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘) βŠ† 𝑍)
92, 8syl 17 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜π‘) βŠ† 𝑍)
109sselda 3981 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑛 ∈ 𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
12 nfcv 2901 . . . . . . . . . . 11 β„²π‘₯𝑍
13 nfrab1 3449 . . . . . . . . . . 11 β„²π‘₯{π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 5254 . . . . . . . . . 10 β„²π‘₯(𝑛 ∈ 𝑍 ↦ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2899 . . . . . . . . 9 β„²π‘₯𝐸
16 nfcv 2901 . . . . . . . . 9 β„²π‘₯𝑛
1715, 16nffv 6900 . . . . . . . 8 β„²π‘₯(πΈβ€˜π‘›)
18 fvex 6903 . . . . . . . 8 (πΈβ€˜π‘›) ∈ V
1917, 18mptexf 44238 . . . . . . 7 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛 ∈ 𝑍 ↦ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
2221fvmpt2 7008 . . . . . 6 ((𝑛 ∈ 𝑍 ∧ (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) ∈ V) β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
2310, 20, 22syl2anc 582 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (π»β€˜π‘›) = (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )))
2423fveq1d 6892 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ ((π»β€˜π‘›)β€˜π‘‹) = ((π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ))β€˜π‘‹))
25 nfcv 2901 . . . . . 6 Ⅎ𝑦(πΈβ€˜π‘›)
26 nfcv 2901 . . . . . 6 Ⅎ𝑦sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )
27 nfcv 2901 . . . . . 6 β„²π‘₯sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < )
28 fveq2 6890 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘¦))
2928mpteq2dv 5249 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
3029rneqd 5936 . . . . . . 7 (π‘₯ = 𝑦 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)))
3130supeq1d 9443 . . . . . 6 (π‘₯ = 𝑦 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 5256 . . . . 5 (π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < )) = (𝑦 ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ))
33 simpl 481 . . . . . . . . 9 ((𝑦 = 𝑋 ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑦 = 𝑋)
3433fveq2d 6894 . . . . . . . 8 ((𝑦 = 𝑋 ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘¦) = ((πΉβ€˜π‘š)β€˜π‘‹))
3534mpteq2dva 5247 . . . . . . 7 (𝑦 = 𝑋 β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
3635rneqd 5936 . . . . . 6 (𝑦 = 𝑋 β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)))
3736supeq1d 9443 . . . . 5 (𝑦 = 𝑋 β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ))
3837eleq1d 2816 . . . . . . . 8 (𝑦 = 𝑋 β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ))
39 uzss 12849 . . . . . . . . . . 11 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ (β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘))
40 iinss1 5011 . . . . . . . . . . 11 ((β„€β‰₯β€˜π‘›) βŠ† (β„€β‰₯β€˜π‘) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) βŠ† ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) βŠ† ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
4241adantl 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) βŠ† ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
43 smflimsuplem5.x . . . . . . . . . 10 (πœ‘ β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š))
4443adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š))
4542, 44sseldd 3982 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
46 smflimsuplem5.b . . . . . . . . . . 11 β„²π‘šπœ‘
47 nfv 1915 . . . . . . . . . . 11 β„²π‘š 𝑛 ∈ (β„€β‰₯β€˜π‘)
4846, 47nfan 1900 . . . . . . . . . 10 β„²π‘š(πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘))
49 eqid 2730 . . . . . . . . . 10 (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘›)
50 simpll 763 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ πœ‘)
5139sselda 3981 . . . . . . . . . . . 12 ((𝑛 ∈ (β„€β‰₯β€˜π‘) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘))
5251adantll 710 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑆 ∈ SAlg)
5453adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑆 ∈ SAlg)
55 simpl 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ πœ‘)
569sselda 3981 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ π‘š ∈ 𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹:π‘βŸΆ(SMblFnβ€˜π‘†))
5857ffvelcdmda 7085 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
5955, 56, 58syl2anc 582 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
60 eqid 2730 . . . . . . . . . . . . 13 dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘š)
6154, 59, 60smff 45746 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
62 eliin 5001 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) β†’ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) ↔ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘)𝑋 ∈ dom (πΉβ€˜π‘š)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑋 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘)dom (πΉβ€˜π‘š) ↔ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘)𝑋 ∈ dom (πΉβ€˜π‘š)))
6443, 63mpbid 231 . . . . . . . . . . . . . 14 (πœ‘ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘)𝑋 ∈ dom (πΉβ€˜π‘š))
6564adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘)𝑋 ∈ dom (πΉβ€˜π‘š))
66 simpr 483 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ π‘š ∈ (β„€β‰₯β€˜π‘))
67 rspa 3243 . . . . . . . . . . . . 13 ((βˆ€π‘š ∈ (β„€β‰₯β€˜π‘)𝑋 ∈ dom (πΉβ€˜π‘š) ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ dom (πΉβ€˜π‘š))
6865, 66, 67syl2anc 582 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ dom (πΉβ€˜π‘š))
6961, 68ffvelcdmd 7086 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ ℝ)
7050, 52, 69syl2anc 582 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ ℝ)
71 eluzelz 12836 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ 𝑛 ∈ β„€)
7271adantl 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑛 ∈ β„€)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑀 ∈ β„€)
7473adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑀 ∈ β„€)
75 fvex 6903 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ 𝑍) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 44743 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
7978adantr 479 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
8077, 79eqeltrd 2831 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
8180renepnfd 11269 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) β‰  +∞)
8248, 49, 70, 81limsupubuzmpt 44733 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦)
83 uzid2 44413 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘›))
8483ne0d 4334 . . . . . . . . . . 11 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
8584adantl 480 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
8648, 85, 70supxrre3rnmpt 44437 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘¦ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)((πΉβ€˜π‘š)β€˜π‘‹) ≀ 𝑦))
8782, 86mpbird 256 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ) ∈ ℝ)
8838, 45, 87elrabd 3684 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ})
89 simpl 481 . . . . . . . . . . . . 13 ((𝑦 = π‘₯ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝑦 = π‘₯)
9089fveq2d 6894 . . . . . . . . . . . 12 ((𝑦 = π‘₯ ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ ((πΉβ€˜π‘š)β€˜π‘¦) = ((πΉβ€˜π‘š)β€˜π‘₯))
9190mpteq2dva 5247 . . . . . . . . . . 11 (𝑦 = π‘₯ β†’ (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)))
9291rneqd 5936 . . . . . . . . . 10 (𝑦 = π‘₯ β†’ ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)))
9392supeq1d 9443 . . . . . . . . 9 (𝑦 = π‘₯ β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ))
9493eleq1d 2816 . . . . . . . 8 (𝑦 = π‘₯ β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ))
9594cbvrabv 3440 . . . . . . 7 {𝑦 ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘¦)), ℝ*, < ) ∈ ℝ} = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
9688, 95eleqtrdi 2841 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
97 eqid 2730 . . . . . . . 8 {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ}
98 fvex 6903 . . . . . . . . . . . . 13 (πΉβ€˜π‘š) ∈ V
9998dmex 7904 . . . . . . . . . . . 12 dom (πΉβ€˜π‘š) ∈ V
10099rgenw 3063 . . . . . . . . . . 11 βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V
101100a1i 11 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10284, 101iinexd 44123 . . . . . . . . 9 (𝑛 ∈ (β„€β‰₯β€˜π‘) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
103102adantl 480 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∈ V)
10497, 103rabexd 5332 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V)
10511fvmpt2 7008 . . . . . . 7 ((𝑛 ∈ 𝑍 ∧ {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ} ∈ V) β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
10610, 104, 105syl2anc 582 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (πΈβ€˜π‘›) = {π‘₯ ∈ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ) ∈ ℝ})
10796, 106eleqtrrd 2834 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑋 ∈ (πΈβ€˜π‘›))
10832, 37, 107, 87fvmptd3 7020 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ ((π‘₯ ∈ (πΈβ€˜π‘›) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘₯)), ℝ*, < ))β€˜π‘‹) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ))
10924, 108eqtrd 2770 . . 3 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ ((π»β€˜π‘›)β€˜π‘‹) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < ))
1101, 109mpteq2da 5245 . 2 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘) ↦ ((π»β€˜π‘›)β€˜π‘‹)) = (𝑛 ∈ (β„€β‰₯β€˜π‘) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < )))
1113eluzelz2 44411 . . . 4 (𝑁 ∈ 𝑍 β†’ 𝑁 ∈ β„€)
1122, 111syl 17 . . 3 (πœ‘ β†’ 𝑁 ∈ β„€)
113 eqid 2730 . . 3 (β„€β‰₯β€˜π‘) = (β„€β‰₯β€˜π‘)
11475a1i 11 . . . . 5 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜π‘)) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
11575a1i 11 . . . . 5 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ ((πΉβ€˜π‘š)β€˜π‘‹) ∈ V)
11646, 112, 73, 113, 3, 114, 115limsupequzmpt 44743 . . . 4 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) = (lim supβ€˜(π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
117116, 78eqeltrd 2831 . . 3 (πœ‘ β†’ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))) ∈ ℝ)
11846, 112, 113, 69, 117supcnvlimsupmpt 44755 . 2 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘) ↦ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ ((πΉβ€˜π‘š)β€˜π‘‹)), ℝ*, < )) ⇝ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
119110, 118eqbrtrd 5169 1 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘) ↦ ((π»β€˜π‘›)β€˜π‘‹)) ⇝ (lim supβ€˜(π‘š ∈ (β„€β‰₯β€˜π‘) ↦ ((πΉβ€˜π‘š)β€˜π‘‹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539  β„²wnf 1783   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  βˆ© ciin 4997   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676  βŸΆwf 6538  β€˜cfv 6542  supcsup 9437  β„cr 11111  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„€cz 12562  β„€β‰₯cuz 12826  lim supclsp 15418   ⇝ cli 15432  SAlgcsalg 45322  SMblFncsmblfn 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-ioo 13332  df-ico 13334  df-fz 13489  df-fl 13761  df-ceil 13762  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-smblfn 45710
This theorem is referenced by:  smflimsuplem6  45839  smflimsuplem8  45841
  Copyright terms: Public domain W3C validator