Step | Hyp | Ref
| Expression |
1 | | smflimsuplem5.a |
. . 3
⊢
Ⅎ𝑛𝜑 |
2 | | smflimsuplem5.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
3 | | smflimsuplem5.z |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | 3 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | 4 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | | uzss 12534 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
8 | 7, 3 | sseqtrrdi 3968 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
9 | 2, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝑁) ⊆ 𝑍) |
10 | 9 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
11 | | smflimsuplem5.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
12 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑍 |
13 | | nfrab1 3310 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥{𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
14 | 12, 13 | nfmpt 5177 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
15 | 11, 14 | nfcxfr 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐸 |
16 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑛 |
17 | 15, 16 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝐸‘𝑛) |
18 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐸‘𝑛) ∈ V |
19 | 17, 18 | mptexf 42670 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V |
20 | 19 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V) |
21 | | smflimsuplem5.h |
. . . . . . 7
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
22 | 21 | fvmpt2 6868 |
. . . . . 6
⊢ ((𝑛 ∈ 𝑍 ∧ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈ V)
→ (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
23 | 10, 20, 22 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
24 | 23 | fveq1d 6758 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) = ((𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))‘𝑋)) |
25 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑦(𝐸‘𝑛) |
26 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑦sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
) |
27 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
) |
28 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
29 | 28 | mpteq2dv 5172 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
30 | 29 | rneqd 5836 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
31 | 30 | supeq1d 9135 |
. . . . . 6
⊢ (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
32 | 17, 25, 26, 27, 31 | cbvmptf 5179 |
. . . . 5
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
33 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑋 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑦 = 𝑋) |
34 | 33 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑦 = 𝑋 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑋)) |
35 | 34 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
36 | 35 | rneqd 5836 |
. . . . . 6
⊢ (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) |
37 | 36 | supeq1d 9135 |
. . . . 5
⊢ (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
)) |
38 | 37 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ)) |
39 | | uzss 12534 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑁)) |
40 | | iinss1 4936 |
. . . . . . . . . . 11
⊢
((ℤ≥‘𝑛) ⊆ (ℤ≥‘𝑁) → ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ∩
𝑚 ∈
(ℤ≥‘𝑁)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
42 | 41 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
43 | | smflimsuplem5.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
45 | 42, 44 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
46 | | smflimsuplem5.b |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝜑 |
47 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚 𝑛 ∈
(ℤ≥‘𝑁) |
48 | 46, 47 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
50 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
51 | 39 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑁)) |
52 | 51 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ (ℤ≥‘𝑁)) |
53 | | smflimsuplem5.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ SAlg) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑆 ∈ SAlg) |
55 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝜑) |
56 | 9 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑚 ∈ 𝑍) |
57 | | smflimsuplem5.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
58 | 57 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
59 | 55, 56, 58 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
60 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
61 | 54, 59, 60 | smff 44155 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
62 | | eliin 4926 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚) → (𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑁)dom (𝐹‘𝑚) ↔ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ dom (𝐹‘𝑚))) |
63 | 43, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑁)dom (𝐹‘𝑚) ↔ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ dom (𝐹‘𝑚))) |
64 | 43, 63 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ dom (𝐹‘𝑚)) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → ∀𝑚 ∈
(ℤ≥‘𝑁)𝑋 ∈ dom (𝐹‘𝑚)) |
66 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑚 ∈ (ℤ≥‘𝑁)) |
67 | | rspa 3130 |
. . . . . . . . . . . . 13
⊢
((∀𝑚 ∈
(ℤ≥‘𝑁)𝑋 ∈ dom (𝐹‘𝑚) ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ dom (𝐹‘𝑚)) |
68 | 65, 66, 67 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ dom (𝐹‘𝑚)) |
69 | 61, 68 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
70 | 50, 52, 69 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
71 | | eluzelz 12521 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → 𝑛 ∈ ℤ) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℤ) |
73 | | smflimsuplem5.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
74 | 73 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
75 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑚)‘𝑋) ∈ V |
76 | 75 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
77 | 48, 72, 74, 49, 3, 70, 76 | limsupequzmpt 43160 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
78 | | smflimsuplem5.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
79 | 78 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
80 | 77, 79 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
81 | 80 | renepnfd 10957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) ≠ +∞) |
82 | 48, 49, 70, 81 | limsupubuzmpt 43150 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈
(ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦) |
83 | | uzid2 42835 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → 𝑛 ∈ (ℤ≥‘𝑛)) |
84 | 83 | ne0d 4266 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑛) ≠ ∅) |
85 | 84 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) →
(ℤ≥‘𝑛) ≠ ∅) |
86 | 48, 85, 70 | supxrre3rnmpt 42859 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ ↔ ∃𝑦
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ≤ 𝑦)) |
87 | 82, 86 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < ) ∈
ℝ) |
88 | 38, 45, 87 | elrabd 3619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ {𝑦 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ}) |
89 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 𝑥 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑦 = 𝑥) |
90 | 89 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑦 = 𝑥 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑦) = ((𝐹‘𝑚)‘𝑥)) |
91 | 90 | mpteq2dva 5170 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) |
92 | 91 | rneqd 5836 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) |
93 | 92 | supeq1d 9135 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
)) |
94 | 93 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
95 | 94 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑦 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
96 | 88, 95 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
97 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} |
98 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑚) ∈ V |
99 | 98 | dmex 7732 |
. . . . . . . . . . . 12
⊢ dom
(𝐹‘𝑚) ∈ V |
100 | 99 | rgenw 3075 |
. . . . . . . . . . 11
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
101 | 100 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
102 | 84, 101 | iinexd 42571 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
103 | 102 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
104 | 97, 103 | rabexd 5252 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
105 | 11 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑍 ∧ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
106 | 10, 104, 105 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
107 | 96, 106 | eleqtrrd 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑋 ∈ (𝐸‘𝑛)) |
108 | 32, 37, 107, 87 | fvmptd3 6880 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
)) |
109 | 24, 108 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
)) |
110 | 1, 109 | mpteq2da 5168 |
. 2
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) = (𝑛 ∈ (ℤ≥‘𝑁) ↦ sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, <
))) |
111 | 3 | eluzelz2 42833 |
. . . 4
⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
112 | 2, 111 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
113 | | eqid 2738 |
. . 3
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
114 | 75 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
115 | 75 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
116 | 46, 112, 73, 113, 3, 114, 115 | limsupequzmpt 43160 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)))) |
117 | 116, 78 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (lim sup‘(𝑚 ∈
(ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
118 | 46, 112, 113, 69, 117 | supcnvlimsupmpt 43172 |
. 2
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)), ℝ*, < )) ⇝
(lim sup‘(𝑚 ∈
(ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
119 | 110, 118 | eqbrtrd 5092 |
1
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈
(ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |