Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem5 Structured version   Visualization version   GIF version

Theorem smflimsuplem5 46861
Description: 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem5.a 𝑛𝜑
smflimsuplem5.b 𝑚𝜑
smflimsuplem5.m (𝜑𝑀 ∈ ℤ)
smflimsuplem5.z 𝑍 = (ℤ𝑀)
smflimsuplem5.s (𝜑𝑆 ∈ SAlg)
smflimsuplem5.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem5.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem5.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem5.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem5.n (𝜑𝑁𝑍)
smflimsuplem5.x (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Distinct variable groups:   𝑛,𝐹,𝑥   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem smflimsuplem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem5.a . . 3 𝑛𝜑
2 smflimsuplem5.n . . . . . . . 8 (𝜑𝑁𝑍)
3 smflimsuplem5.z . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
43eleq2i 2823 . . . . . . . . . . 11 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 216 . . . . . . . . . 10 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 uzss 12752 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
75, 6syl 17 . . . . . . . . 9 (𝑁𝑍 → (ℤ𝑁) ⊆ (ℤ𝑀))
87, 3sseqtrrdi 3976 . . . . . . . 8 (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
92, 8syl 17 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
109sselda 3934 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
11 smflimsuplem5.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
12 nfcv 2894 . . . . . . . . . . 11 𝑥𝑍
13 nfrab1 3415 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
1412, 13nfmpt 5189 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1511, 14nfcxfr 2892 . . . . . . . . 9 𝑥𝐸
16 nfcv 2894 . . . . . . . . 9 𝑥𝑛
1715, 16nffv 6832 . . . . . . . 8 𝑥(𝐸𝑛)
18 fvex 6835 . . . . . . . 8 (𝐸𝑛) ∈ V
1917, 18mptexf 45273 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
2019a1i 11 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
21 smflimsuplem5.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2221fvmpt2 6940 . . . . . 6 ((𝑛𝑍 ∧ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2310, 20, 22syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
2423fveq1d 6824 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋))
25 nfcv 2894 . . . . . 6 𝑦(𝐸𝑛)
26 nfcv 2894 . . . . . 6 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
27 nfcv 2894 . . . . . 6 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
28 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2928mpteq2dv 5185 . . . . . . . 8 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3029rneqd 5878 . . . . . . 7 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
3130supeq1d 9330 . . . . . 6 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
3217, 25, 26, 27, 31cbvmptf 5191 . . . . 5 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
33 simpl 482 . . . . . . . . 9 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑋)
3433fveq2d 6826 . . . . . . . 8 ((𝑦 = 𝑋𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
3534mpteq2dva 5184 . . . . . . 7 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3635rneqd 5878 . . . . . 6 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
3736supeq1d 9330 . . . . 5 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
3837eleq1d 2816 . . . . . . . 8 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
39 uzss 12752 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ⊆ (ℤ𝑁))
40 iinss1 4957 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4139, 40syl 17 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4241adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
43 smflimsuplem5.x . . . . . . . . . 10 (𝜑𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4443adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚))
4542, 44sseldd 3935 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
46 smflimsuplem5.b . . . . . . . . . . 11 𝑚𝜑
47 nfv 1915 . . . . . . . . . . 11 𝑚 𝑛 ∈ (ℤ𝑁)
4846, 47nfan 1900 . . . . . . . . . 10 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
49 eqid 2731 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
50 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
5139sselda 3934 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
5251adantll 714 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
53 smflimsuplem5.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ SAlg)
5453adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝜑)
569sselda 3934 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
57 smflimsuplem5.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5857ffvelcdmda 7017 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
5955, 56, 58syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
60 eqid 2731 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
6154, 59, 60smff 46769 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
62 eliin 4946 . . . . . . . . . . . . . . . 16 (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6343, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑁)dom (𝐹𝑚) ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚)))
6443, 63mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
6564adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → ∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚))
66 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
67 rspa 3221 . . . . . . . . . . . . 13 ((∀𝑚 ∈ (ℤ𝑁)𝑋 ∈ dom (𝐹𝑚) ∧ 𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6865, 66, 67syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑋 ∈ dom (𝐹𝑚))
6961, 68ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
7050, 52, 69syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
71 eluzelz 12739 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
7271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ ℤ)
73 smflimsuplem5.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
7473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
75 fvex 6835 . . . . . . . . . . . . . 14 ((𝐹𝑚)‘𝑋) ∈ V
7675a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7748, 72, 74, 49, 3, 70, 76limsupequzmpt 45766 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
78 smflimsuplem5.r . . . . . . . . . . . . 13 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8077, 79eqeltrd 2831 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
8180renepnfd 11160 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
8248, 49, 70, 81limsupubuzmpt 45756 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
83 uzid2 45442 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ (ℤ𝑛))
8483ne0d 4292 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (ℤ𝑛) ≠ ∅)
8584adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑛) ≠ ∅)
8648, 85, 70supxrre3rnmpt 45466 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
8782, 86mpbird 257 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
8838, 45, 87elrabd 3649 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
89 simpl 482 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → 𝑦 = 𝑥)
9089fveq2d 6826 . . . . . . . . . . . 12 ((𝑦 = 𝑥𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑥))
9190mpteq2dva 5184 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9291rneqd 5878 . . . . . . . . . 10 (𝑦 = 𝑥 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9392supeq1d 9330 . . . . . . . . 9 (𝑦 = 𝑥 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9493eleq1d 2816 . . . . . . . 8 (𝑦 = 𝑥 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
9594cbvrabv 3405 . . . . . . 7 {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
9688, 95eleqtrdi 2841 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
97 eqid 2731 . . . . . . . 8 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
98 fvex 6835 . . . . . . . . . . . . 13 (𝐹𝑚) ∈ V
9998dmex 7839 . . . . . . . . . . . 12 dom (𝐹𝑚) ∈ V
10099rgenw 3051 . . . . . . . . . . 11 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
101100a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10284, 101iinexd 45169 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
103102adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10497, 103rabexd 5278 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10511fvmpt2 6940 . . . . . . 7 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10610, 104, 105syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10796, 106eleqtrrd 2834 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ (𝐸𝑛))
10832, 37, 107, 87fvmptd3 6952 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
10924, 108eqtrd 2766 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑋) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
1101, 109mpteq2da 5183 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )))
1113eluzelz2 45440 . . . 4 (𝑁𝑍𝑁 ∈ ℤ)
1122, 111syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
113 eqid 2731 . . 3 (ℤ𝑁) = (ℤ𝑁)
11475a1i 11 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑋) ∈ V)
11575a1i 11 . . . . 5 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
11646, 112, 73, 113, 3, 114, 115limsupequzmpt 45766 . . . 4 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
117116, 78eqeltrd 2831 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
11846, 112, 113, 69, 117supcnvlimsupmpt 45778 . 2 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < )) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
119110, 118eqbrtrd 5113 1 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  c0 4283   ciin 4942   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  wf 6477  cfv 6481  supcsup 9324  cr 11002  *cxr 11142   < clt 11143  cle 11144  cz 12465  cuz 12729  lim supclsp 15374  cli 15388  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-fz 13405  df-fl 13693  df-ceil 13694  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-smblfn 46733
This theorem is referenced by:  smflimsuplem6  46862  smflimsuplem8  46864
  Copyright terms: Public domain W3C validator