Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem7 Structured version   Visualization version   GIF version

Theorem smflimsuplem7 42532
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem7.m (𝜑𝑀 ∈ ℤ)
smflimsuplem7.z 𝑍 = (ℤ𝑀)
smflimsuplem7.s (𝜑𝑆 ∈ SAlg)
smflimsuplem7.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem7.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem7.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem7.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem7 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Distinct variable groups:   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑘,𝑚,𝑛)   𝑆(𝑥,𝑘,𝑚,𝑛)   𝐸(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem7.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
21a1i 11 . 2 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
3 simpl 475 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝜑)
4 rabidim2 40792 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
54adantl 474 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6 rabidim1 3319 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7 eliun 4797 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
86, 7sylib 210 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
98adantl 474 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 nfv 1873 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
11 nfv 1873 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
12 nfcv 2932 . . . . . . . . . . . . . . . . . . . . 21 𝑚lim sup
13 nfmpt1 5026 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
1412, 13nffv 6511 . . . . . . . . . . . . . . . . . . . 20 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
15 nfcv 2932 . . . . . . . . . . . . . . . . . . . 20 𝑚
1614, 15nfel 2944 . . . . . . . . . . . . . . . . . . 19 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
1711, 16nfan 1862 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
18 nfv 1873 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛𝑍
19 nfcv 2932 . . . . . . . . . . . . . . . . . . 19 𝑚𝑥
20 nfii1 4825 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2119, 20nfel 2944 . . . . . . . . . . . . . . . . . 18 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2217, 18, 21nf3an 1864 . . . . . . . . . . . . . . . . 17 𝑚((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
23 nfv 1873 . . . . . . . . . . . . . . . . 17 𝑚 𝑘 ∈ (ℤ𝑛)
2422, 23nfan 1862 . . . . . . . . . . . . . . . 16 𝑚(((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛))
25 simpl1l 1204 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
26 smflimsuplem7.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑀 ∈ ℤ)
28 smflimsuplem7.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
29 smflimsuplem7.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ SAlg)
3025, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑆 ∈ SAlg)
31 smflimsuplem7.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
33 smflimsuplem7.e . . . . . . . . . . . . . . . 16 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
34 smflimsuplem7.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
3528uztrn2 12079 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
36353ad2antl2 1166 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
37 simpl1r 1205 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
38 uzss 12082 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
39 iinss1 4807 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4140adantl 474 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
42 simpl 475 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4341, 42sseldd 3861 . . . . . . . . . . . . . . . . 17 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
44433ad2antl3 1167 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4524, 27, 28, 30, 32, 33, 34, 36, 37, 44smflimsuplem2 42527 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐻𝑘))
4645ralrimiva 3132 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
47 vex 3418 . . . . . . . . . . . . . . 15 𝑥 ∈ V
48 eliin 4798 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘)))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
5046, 49sylibr 226 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
51503exp 1099 . . . . . . . . . . . 12 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))))
5210, 51reximdai 3254 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)))
5352imp 398 . . . . . . . . . 10 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
54 eliun 4797 . . . . . . . . . 10 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
5553, 54sylibr 226 . . . . . . . . 9 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
563, 5, 9, 55syl21anc 825 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
577biimpi 208 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
586, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5958adantl 474 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
60 nfv 1873 . . . . . . . . . . 11 𝑛𝜑
61 nfcv 2932 . . . . . . . . . . . 12 𝑛𝑥
62 nfv 1873 . . . . . . . . . . . . 13 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
63 nfiu1 4824 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6462, 63nfrab 3325 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6561, 64nfel 2944 . . . . . . . . . . 11 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6660, 65nfan 1862 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
67 nfv 1873 . . . . . . . . . 10 𝑛(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
68 nfv 1873 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
69 simp1l 1177 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
7069, 26syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
7169, 29syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
7269, 31syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
73 simp1r 1178 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
74 simp2 1117 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
75 simp3 1118 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7668, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75smflimsuplem6 42531 . . . . . . . . . . . 12 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
77763exp 1099 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
785, 77syldan 582 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
7966, 67, 78rexlimd 3260 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8059, 79mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
8156, 80jca 504 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
82 rabid 3317 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8381, 82sylibr 226 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
8483ex 405 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
85 ssrab2 3948 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
8685a1i 11 . . . . . . . . 9 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
8728eluzelz2 41107 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
8887uzidd 41110 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
8988adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
90 nfv 1873 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑛𝑍)
91 xrltso 12354 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → < Or ℝ*)
9392supexd 8714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
94 eqid 2778 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9590, 93, 94fnmptd 6321 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛))
96 fveq2 6501 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
97 fveq2 6501 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
9897mpteq1d 5017 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9998rneqd 5652 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
10099supeq1d 8707 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
10196, 100mpteq12dv 5013 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
102 fvex 6514 . . . . . . . . . . . . . . . . . . . 20 (𝐸𝑛) ∈ V
103102mptex 6814 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
104101, 34, 103fvmpt 6597 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
105104adantl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
106105fneq1d 6281 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐻𝑛) Fn (𝐸𝑛) ↔ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛)))
10795, 106mpbird 249 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐻𝑛) Fn (𝐸𝑛))
108107fndmd 6291 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → dom (𝐻𝑛) = (𝐸𝑛))
10997iineq1d 40778 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
110109eleq2d 2851 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
111100eleq1d 2850 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
112110, 111anbi12d 621 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
113112rabbidva2 3400 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
115 fveq2 6501 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
116115mpteq2dv 5024 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
117116rneqd 5652 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
118117supeq1d 8707 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
119118eleq1d 2850 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
120119cbvrabv 3412 . . . . . . . . . . . . . . . . . 18 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
12188ne0d 4189 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
122 fvex 6514 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ∈ V
123122dmex 7433 . . . . . . . . . . . . . . . . . . . . 21 dom (𝐹𝑚) ∈ V
124123rgenw 3100 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
125124a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
126121, 125iinexd 40823 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
127120, 126rabexd 5093 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
12833, 113, 114, 127fvmptd3 6619 . . . . . . . . . . . . . . . 16 (𝑛𝑍 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
129128adantl 474 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
130 ssrab2 3948 . . . . . . . . . . . . . . . 16 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
131130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
132129, 131eqsstrd 3897 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
133108, 132eqsstrd 3897 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
134 fveq2 6501 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐻𝑘) = (𝐻𝑛))
135134dmeqd 5625 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → dom (𝐻𝑘) = dom (𝐻𝑛))
136135sseq1d 3890 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
137136rspcev 3535 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
13889, 133, 137syl2anc 576 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
139 iinss 4847 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
141140ralrimiva 3132 . . . . . . . . . 10 (𝜑 → ∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
142 ss2iun 4810 . . . . . . . . . 10 (∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
143141, 142syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14486, 143sstrd 3870 . . . . . . . 8 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14582simplbi 490 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
14654biimpi 208 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
147145, 146syl 17 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
148147adantl 474 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
149 nfiu1 4824 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
15067, 149nfrab 3325 . . . . . . . . . . . . 13 𝑛{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15161, 150nfel 2944 . . . . . . . . . . . 12 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15260, 151nfan 1862 . . . . . . . . . . 11 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
15382simprbi 489 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
154 nfv 1873 . . . . . . . . . . . . . . . 16 𝑘𝜑
155 nfmpt1 5026 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))
156 nfcv 2932 . . . . . . . . . . . . . . . . 17 𝑘dom ⇝
157155, 156nfel 2944 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
158154, 157nfan 1862 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
159 nfv 1873 . . . . . . . . . . . . . . 15 𝑘 𝑛𝑍
160 nfcv 2932 . . . . . . . . . . . . . . . 16 𝑘𝑥
161 nfii1 4825 . . . . . . . . . . . . . . . 16 𝑘 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
162160, 161nfel 2944 . . . . . . . . . . . . . . 15 𝑘 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
163158, 159, 162nf3an 1864 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
16426adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
1651643adant3 1112 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
1661653adant1r 1157 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
16729adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
1681673adant3 1112 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
1691683adant1r 1157 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
17031adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1711703adant3 1112 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1721713adant1r 1157 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
173 simp2 1117 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑛𝑍)
174 simp3 1118 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
175 simp1r 1178 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
176163, 166, 28, 169, 172, 33, 34, 173, 174, 175smflimsuplem4 42529 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
1771763exp 1099 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
178153, 177sylan2 583 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
179152, 62, 178rexlimd 3260 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
180148, 179mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
181180ralrimiva 3132 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
182144, 181jca 504 . . . . . . 7 (𝜑 → ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
183 nfrab1 3324 . . . . . . . 8 𝑥{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
184 nfcv 2932 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
185183, 184ssrabf 40805 . . . . . . 7 ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
186182, 185sylibr 226 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
187186sseld 3859 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}))
18884, 187impbid 204 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
189188alrimiv 1886 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
190 nfrab1 3324 . . . 4 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
191190, 183cleqf 2961 . . 3 ({𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
192189, 191sylibr 226 . 2 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
1932, 192eqtrd 2814 1 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068  wal 1505   = wceq 1507  wcel 2050  wral 3088  wrex 3089  {crab 3092  Vcvv 3415  wss 3831   ciun 4793   ciin 4794  cmpt 5009   Or wor 5326  dom cdm 5408  ran crn 5409   Fn wfn 6185  wf 6186  cfv 6190  supcsup 8701  cr 10336  *cxr 10475   < clt 10476  cz 11796  cuz 12061  lim supclsp 14691  cli 14705  SAlgcsalg 42025  SMblFncsmblfn 42409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-pm 8211  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-inf 8704  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-q 12166  df-rp 12208  df-ioo 12561  df-ico 12563  df-fz 12712  df-fl 12980  df-ceil 12981  df-seq 13188  df-exp 13248  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-limsup 14692  df-clim 14709  df-rlim 14710  df-smblfn 42410
This theorem is referenced by:  smflimsuplem8  42533
  Copyright terms: Public domain W3C validator