Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem7 Structured version   Visualization version   GIF version

Theorem smflimsuplem7 45841
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem7.m (𝜑𝑀 ∈ ℤ)
smflimsuplem7.z 𝑍 = (ℤ𝑀)
smflimsuplem7.s (𝜑𝑆 ∈ SAlg)
smflimsuplem7.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem7.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem7.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem7.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem7 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Distinct variable groups:   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑘,𝑚,𝑛)   𝑆(𝑥,𝑘,𝑚,𝑛)   𝐸(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem7.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
21a1i 11 . 2 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
3 simpl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝜑)
4 rabidim2 44093 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
54adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6 rabidim1 3452 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7 eliun 5001 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
86, 7sylib 217 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
98adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 nfv 1916 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
11 nfv 1916 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
12 nfcv 2902 . . . . . . . . . . . . . . . . . . . . 21 𝑚lim sup
13 nfmpt1 5256 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
1412, 13nffv 6901 . . . . . . . . . . . . . . . . . . . 20 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
15 nfcv 2902 . . . . . . . . . . . . . . . . . . . 20 𝑚
1614, 15nfel 2916 . . . . . . . . . . . . . . . . . . 19 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
1711, 16nfan 1901 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
18 nfv 1916 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛𝑍
19 nfcv 2902 . . . . . . . . . . . . . . . . . . 19 𝑚𝑥
20 nfii1 5032 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2119, 20nfel 2916 . . . . . . . . . . . . . . . . . 18 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2217, 18, 21nf3an 1903 . . . . . . . . . . . . . . . . 17 𝑚((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
23 nfv 1916 . . . . . . . . . . . . . . . . 17 𝑚 𝑘 ∈ (ℤ𝑛)
2422, 23nfan 1901 . . . . . . . . . . . . . . . 16 𝑚(((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛))
25 simpl1l 1223 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
26 smflimsuplem7.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑀 ∈ ℤ)
28 smflimsuplem7.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
29 smflimsuplem7.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ SAlg)
3025, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑆 ∈ SAlg)
31 smflimsuplem7.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
33 smflimsuplem7.e . . . . . . . . . . . . . . . 16 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
34 smflimsuplem7.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
3528uztrn2 12846 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
36353ad2antl2 1185 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
37 simpl1r 1224 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
38 uzss 12850 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
39 iinss1 5012 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4140adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
42 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4341, 42sseldd 3983 . . . . . . . . . . . . . . . . 17 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
44433ad2antl3 1186 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4524, 27, 28, 30, 32, 33, 34, 36, 37, 44smflimsuplem2 45836 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐻𝑘))
4645ralrimiva 3145 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
47 vex 3477 . . . . . . . . . . . . . . 15 𝑥 ∈ V
48 eliin 5002 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘)))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
5046, 49sylibr 233 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
51503exp 1118 . . . . . . . . . . . 12 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))))
5210, 51reximdai 3257 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)))
5352imp 406 . . . . . . . . . 10 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
54 eliun 5001 . . . . . . . . . 10 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
5553, 54sylibr 233 . . . . . . . . 9 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
563, 5, 9, 55syl21anc 835 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
577biimpi 215 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
586, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5958adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
60 nfv 1916 . . . . . . . . . . 11 𝑛𝜑
61 nfcv 2902 . . . . . . . . . . . 12 𝑛𝑥
62 nfv 1916 . . . . . . . . . . . . 13 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
63 nfiu1 5031 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6462, 63nfrabw 3467 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6561, 64nfel 2916 . . . . . . . . . . 11 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6660, 65nfan 1901 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
67 nfv 1916 . . . . . . . . . 10 𝑛(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
68 nfv 1916 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
69 simp1l 1196 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
7069, 26syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
7169, 29syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
7269, 31syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
73 simp1r 1197 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
74 simp2 1136 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
75 simp3 1137 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7668, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75smflimsuplem6 45840 . . . . . . . . . . . 12 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
77763exp 1118 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
785, 77syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
7966, 67, 78rexlimd 3262 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8059, 79mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
8156, 80jca 511 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
82 rabid 3451 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8381, 82sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
8483ex 412 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
85 ssrab2 4077 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
8685a1i 11 . . . . . . . . 9 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
8728eluzelz2 44412 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
8887uzidd 12843 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
8988adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
90 nfv 1916 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑛𝑍)
91 xrltso 13125 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → < Or ℝ*)
9392supexd 9452 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
94 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9590, 93, 94fnmptd 6691 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛))
96 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
97 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
9897mpteq1d 5243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9998rneqd 5937 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
10099supeq1d 9445 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
10196, 100mpteq12dv 5239 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
102 fvex 6904 . . . . . . . . . . . . . . . . . . . 20 (𝐸𝑛) ∈ V
103102mptex 7227 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
104101, 34, 103fvmpt 6998 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
105104adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
106105fneq1d 6642 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐻𝑛) Fn (𝐸𝑛) ↔ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛)))
10795, 106mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐻𝑛) Fn (𝐸𝑛))
108107fndmd 6654 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → dom (𝐻𝑛) = (𝐸𝑛))
10997iineq1d 44081 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
110109eleq2d 2818 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
111100eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
112110, 111anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
113112rabbidva2 3433 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
115 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
116115mpteq2dv 5250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
117116rneqd 5937 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
118117supeq1d 9445 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
119118eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
120119cbvrabv 3441 . . . . . . . . . . . . . . . . . 18 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
12188ne0d 4335 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
122 fvex 6904 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ∈ V
123122dmex 7906 . . . . . . . . . . . . . . . . . . . . 21 dom (𝐹𝑚) ∈ V
124123rgenw 3064 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
125124a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
126121, 125iinexd 44124 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
127120, 126rabexd 5333 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
12833, 113, 114, 127fvmptd3 7021 . . . . . . . . . . . . . . . 16 (𝑛𝑍 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
129128adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
130 ssrab2 4077 . . . . . . . . . . . . . . . 16 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
131130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
132129, 131eqsstrd 4020 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
133108, 132eqsstrd 4020 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
134 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐻𝑘) = (𝐻𝑛))
135134dmeqd 5905 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → dom (𝐻𝑘) = dom (𝐻𝑛))
136135sseq1d 4013 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
137136rspcev 3612 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
13889, 133, 137syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
139 iinss 5059 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
141140ralrimiva 3145 . . . . . . . . . 10 (𝜑 → ∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
142 ss2iun 5015 . . . . . . . . . 10 (∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
143141, 142syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14486, 143sstrd 3992 . . . . . . . 8 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14582simplbi 497 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
14654biimpi 215 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
147145, 146syl 17 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
148147adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
149 nfiu1 5031 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
15067, 149nfrabw 3467 . . . . . . . . . . . . 13 𝑛{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15161, 150nfel 2916 . . . . . . . . . . . 12 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15260, 151nfan 1901 . . . . . . . . . . 11 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
15382simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
154 nfv 1916 . . . . . . . . . . . . . . . 16 𝑘𝜑
155 nfmpt1 5256 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))
156 nfcv 2902 . . . . . . . . . . . . . . . . 17 𝑘dom ⇝
157155, 156nfel 2916 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
158154, 157nfan 1901 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
159 nfv 1916 . . . . . . . . . . . . . . 15 𝑘 𝑛𝑍
160 nfcv 2902 . . . . . . . . . . . . . . . 16 𝑘𝑥
161 nfii1 5032 . . . . . . . . . . . . . . . 16 𝑘 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
162160, 161nfel 2916 . . . . . . . . . . . . . . 15 𝑘 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
163158, 159, 162nf3an 1903 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
16426adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
1651643adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
1661653adant1r 1176 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
16729adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
1681673adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
1691683adant1r 1176 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
17031adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1711703adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1721713adant1r 1176 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
173 simp2 1136 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑛𝑍)
174 simp3 1137 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
175 simp1r 1197 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
176163, 166, 28, 169, 172, 33, 34, 173, 174, 175smflimsuplem4 45838 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
1771763exp 1118 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
178153, 177sylan2 592 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
179152, 62, 178rexlimd 3262 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
180148, 179mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
181180ralrimiva 3145 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
182144, 181jca 511 . . . . . . 7 (𝜑 → ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
183 nfrab1 3450 . . . . . . . 8 𝑥{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
184 nfcv 2902 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
185183, 184ssrabf 44105 . . . . . . 7 ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
186182, 185sylibr 233 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
187186sseld 3981 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}))
18884, 187impbid 211 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
189188alrimiv 1929 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
190 nfrab1 3450 . . . 4 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
191190, 183cleqf 2933 . . 3 ({𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
192189, 191sylibr 233 . 2 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
1932, 192eqtrd 2771 1 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  wss 3948   ciun 4997   ciin 4998  cmpt 5231   Or wor 5587  dom cdm 5676  ran crn 5677   Fn wfn 6538  wf 6539  cfv 6543  supcsup 9439  cr 11113  *cxr 11252   < clt 11253  cz 12563  cuz 12827  lim supclsp 15419  cli 15433  SAlgcsalg 45323  SMblFncsmblfn 45710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-ioo 13333  df-ico 13335  df-fz 13490  df-fl 13762  df-ceil 13763  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-smblfn 45711
This theorem is referenced by:  smflimsuplem8  45842
  Copyright terms: Public domain W3C validator