Step | Hyp | Ref
| Expression |
1 | | smflimsuplem7.d |
. . 3
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → 𝜑) |
4 | | rabidim2 42541 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
5 | 4 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
6 | | rabidim1 3306 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
7 | | eliun 4925 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
8 | 6, 7 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
10 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
11 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚𝜑 |
12 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑚lim
sup |
13 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) |
14 | 12, 13 | nffv 6766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚(lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) |
15 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚ℝ |
16 | 14, 15 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚(lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ |
17 | 11, 16 | nfan 1903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚(𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
18 | | nfv 1918 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
19 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚𝑥 |
20 | | nfii1 4956 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
21 | 19, 20 | nfel 2920 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚 𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
22 | 17, 18, 21 | nf3an 1905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
23 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚 𝑘 ∈
(ℤ≥‘𝑛) |
24 | 22, 23 | nfan 1903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) |
25 | | simpl1l 1222 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝜑) |
26 | | smflimsuplem7.m |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℤ) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑀 ∈ ℤ) |
28 | | smflimsuplem7.z |
. . . . . . . . . . . . . . . 16
⊢ 𝑍 =
(ℤ≥‘𝑀) |
29 | | smflimsuplem7.s |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ SAlg) |
30 | 25, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑆 ∈ SAlg) |
31 | | smflimsuplem7.f |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
32 | 25, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
33 | | smflimsuplem7.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
34 | | smflimsuplem7.h |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
35 | 28 | uztrn2 12530 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ 𝑍) |
36 | 35 | 3ad2antl2 1184 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ 𝑍) |
37 | | simpl1r 1223 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
38 | | uzss 12534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑘) ⊆
(ℤ≥‘𝑛)) |
39 | | iinss1 4936 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ≥‘𝑘) ⊆ (ℤ≥‘𝑛) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚)) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚)) |
41 | 40 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚)) |
42 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
43 | 41, 42 | sseldd 3918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚)) |
44 | 43 | 3ad2antl3 1185 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚)) |
45 | 24, 27, 28, 30, 32, 33, 34, 36, 37, 44 | smflimsuplem2 44241 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ dom (𝐻‘𝑘)) |
46 | 45 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ∀𝑘 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐻‘𝑘)) |
47 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
48 | | eliin 4926 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ V → (𝑥 ∈ ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ↔ ∀𝑘 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐻‘𝑘))) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ↔ ∀𝑘 ∈ (ℤ≥‘𝑛)𝑥 ∈ dom (𝐻‘𝑘)) |
50 | 46, 49 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
51 | 50 | 3exp 1117 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)))) |
52 | 10, 51 | reximdai 3239 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘))) |
53 | 52 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
54 | | eliun 4925 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
55 | 53, 54 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
56 | 3, 5, 9, 55 | syl21anc 834 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
57 | 7 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
58 | 6, 57 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
59 | 58 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
60 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝜑 |
61 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑥 |
62 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ |
63 | | nfiu1 4955 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
64 | 62, 63 | nfrabw 3311 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
65 | 61, 64 | nfel 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
66 | 60, 65 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
67 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ |
68 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
69 | | simp1l 1195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝜑) |
70 | 69, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑀 ∈ ℤ) |
71 | 69, 29 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑆 ∈ SAlg) |
72 | 69, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
73 | | simp1r 1196 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
74 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑛 ∈ 𝑍) |
75 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
76 | 68, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75 | smflimsuplem6 44245 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) |
77 | 76 | 3exp 1117 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ))) |
78 | 5, 77 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ))) |
79 | 66, 67, 78 | rexlimd 3245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ )) |
80 | 59, 79 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) |
81 | 56, 80 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ )) |
82 | | rabid 3304 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ )) |
83 | 81, 82 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) |
84 | 83 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ })) |
85 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) |
86 | 85 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
87 | 28 | eluzelz2 42833 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
88 | 87 | uzidd 12527 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑛)) |
89 | 88 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑛)) |
90 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
91 | | xrltso 12804 |
. . . . . . . . . . . . . . . . . . 19
⊢ < Or
ℝ* |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (𝐸‘𝑛)) → < Or
ℝ*) |
93 | 92 | supexd 9142 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ (𝐸‘𝑛)) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
V) |
94 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
)) |
95 | 90, 93, 94 | fnmptd 6558 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸‘𝑛)) |
96 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑛 → (𝐸‘𝑘) = (𝐸‘𝑛)) |
97 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑛 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑛)) |
98 | 97 | mpteq1d 5165 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑛 → (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) |
99 | 98 | rneqd 5836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) |
100 | 99 | supeq1d 9135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
)) |
101 | 96, 100 | mpteq12dv 5161 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
102 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸‘𝑛) ∈ V |
103 | 102 | mptex 7081 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) ∈
V |
104 | 101, 34, 103 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ 𝑍 → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
106 | 105 | fneq1d 6510 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐻‘𝑛) Fn (𝐸‘𝑛) ↔ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸‘𝑛))) |
107 | 95, 106 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) Fn (𝐸‘𝑛)) |
108 | 107 | fndmd 6522 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐻‘𝑛) = (𝐸‘𝑛)) |
109 | 97 | iineq1d 42529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑛 → ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
110 | 109 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) ↔ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚))) |
111 | 100 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ)) |
112 | 110, 111 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑛 → ((𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ) ↔ (𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ))) |
113 | 112 | rabbidva2 3400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑥 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
114 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
115 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
116 | 115 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
117 | 116 | rneqd 5836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦))) |
118 | 117 | supeq1d 9135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) = sup(ran
(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, <
)) |
119 | 118 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ ↔ sup(ran (𝑚
∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ)) |
120 | 119 | cbvrabv 3416 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} = {𝑦 ∈
∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑦)), ℝ*, < ) ∈
ℝ} |
121 | 88 | ne0d 4266 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
122 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹‘𝑚) ∈ V |
123 | 122 | dmex 7732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝐹‘𝑚) ∈ V |
124 | 123 | rgenw 3075 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∀𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V |
125 | 124 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ 𝑍 → ∀𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
126 | 121, 125 | iinexd 42571 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∈ V) |
127 | 120, 126 | rabexd 5252 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ∈ V) |
128 | 33, 113, 114, 127 | fvmptd3 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
129 | 128 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) = {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
130 | | ssrab2 4009 |
. . . . . . . . . . . . . . . 16
⊢ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ} ⊆ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
132 | 129, 131 | eqsstrd 3955 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
133 | 108, 132 | eqsstrd 3955 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐻‘𝑛) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
134 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → (𝐻‘𝑘) = (𝐻‘𝑛)) |
135 | 134 | dmeqd 5803 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → dom (𝐻‘𝑘) = dom (𝐻‘𝑛)) |
136 | 135 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑛 → (dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ dom (𝐻‘𝑛) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚))) |
137 | 136 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑛) ∧ dom (𝐻‘𝑛) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ∃𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
138 | 89, 133, 137 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
139 | | iinss 4982 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
141 | 140 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
142 | | ss2iun 4939 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
𝑍 ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
143 | 141, 142 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ⊆ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
144 | 86, 143 | sstrd 3927 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
145 | 82 | simplbi 497 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
146 | 54 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
147 | 145, 146 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
148 | 147 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
149 | | nfiu1 4955 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) |
150 | 67, 149 | nfrabw 3311 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } |
151 | 61, 150 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } |
152 | 60, 151 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) |
153 | 82 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) |
154 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝜑 |
155 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) |
156 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘dom
⇝ |
157 | 155, 156 | nfel 2920 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ |
158 | 154, 157 | nfan 1903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) |
159 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑛 ∈ 𝑍 |
160 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝑥 |
161 | | nfii1 4956 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) |
162 | 160, 161 | nfel 2920 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑥 ∈ ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) |
163 | 158, 159,
162 | nf3an 1905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
164 | 26 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ ℤ) |
165 | 164 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑀 ∈ ℤ) |
166 | 165 | 3adant1r 1175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑀 ∈ ℤ) |
167 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
168 | 167 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑆 ∈ SAlg) |
169 | 168 | 3adant1r 1175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑆 ∈ SAlg) |
170 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
171 | 170 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
172 | 171 | 3adant1r 1175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
173 | | simp2 1135 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑛 ∈ 𝑍) |
174 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) |
175 | | simp1r 1196 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) |
176 | 163, 166,
28, 169, 172, 33, 34, 173, 174, 175 | smflimsuplem4 44243 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
177 | 176 | 3exp 1117 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ))) |
178 | 153, 177 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ))) |
179 | 152, 62, 178 | rexlimd 3245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
180 | 148, 179 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
181 | 180 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
182 | 144, 181 | jca 511 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ ∀𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
183 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } |
184 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
185 | 183, 184 | ssrabf 42553 |
. . . . . . 7
⊢ ({𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ ∀𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ)) |
186 | 182, 185 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ}) |
187 | 186 | sseld 3916 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ})) |
188 | 84, 187 | impbid 211 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ })) |
189 | 188 | alrimiv 1931 |
. . 3
⊢ (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ })) |
190 | | nfrab1 3310 |
. . . 4
⊢
Ⅎ𝑥{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
191 | 190, 183 | cleqf 2937 |
. . 3
⊢ ({𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ })) |
192 | 189, 191 | sylibr 233 |
. 2
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) |
193 | 2, 192 | eqtrd 2778 |
1
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) |