Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem7 Structured version   Visualization version   GIF version

Theorem smflimsuplem7 43454
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem7.m (𝜑𝑀 ∈ ℤ)
smflimsuplem7.z 𝑍 = (ℤ𝑀)
smflimsuplem7.s (𝜑𝑆 ∈ SAlg)
smflimsuplem7.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem7.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem7.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem7.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem7 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Distinct variable groups:   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑘,𝑚,𝑛)   𝑆(𝑥,𝑘,𝑚,𝑛)   𝐸(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem7.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
21a1i 11 . 2 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
3 simpl 486 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝜑)
4 rabidim2 41735 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
54adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6 rabidim1 3336 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7 eliun 4888 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
86, 7sylib 221 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
98adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 nfv 1915 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
11 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
12 nfcv 2958 . . . . . . . . . . . . . . . . . . . . 21 𝑚lim sup
13 nfmpt1 5131 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
1412, 13nffv 6659 . . . . . . . . . . . . . . . . . . . 20 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
15 nfcv 2958 . . . . . . . . . . . . . . . . . . . 20 𝑚
1614, 15nfel 2972 . . . . . . . . . . . . . . . . . . 19 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
1711, 16nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
18 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛𝑍
19 nfcv 2958 . . . . . . . . . . . . . . . . . . 19 𝑚𝑥
20 nfii1 4919 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2119, 20nfel 2972 . . . . . . . . . . . . . . . . . 18 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2217, 18, 21nf3an 1902 . . . . . . . . . . . . . . . . 17 𝑚((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
23 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑚 𝑘 ∈ (ℤ𝑛)
2422, 23nfan 1900 . . . . . . . . . . . . . . . 16 𝑚(((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛))
25 simpl1l 1221 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
26 smflimsuplem7.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑀 ∈ ℤ)
28 smflimsuplem7.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
29 smflimsuplem7.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ SAlg)
3025, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑆 ∈ SAlg)
31 smflimsuplem7.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
33 smflimsuplem7.e . . . . . . . . . . . . . . . 16 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
34 smflimsuplem7.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
3528uztrn2 12254 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
36353ad2antl2 1183 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
37 simpl1r 1222 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
38 uzss 12257 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
39 iinss1 4899 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4140adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
42 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4341, 42sseldd 3919 . . . . . . . . . . . . . . . . 17 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
44433ad2antl3 1184 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4524, 27, 28, 30, 32, 33, 34, 36, 37, 44smflimsuplem2 43449 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐻𝑘))
4645ralrimiva 3152 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
47 vex 3447 . . . . . . . . . . . . . . 15 𝑥 ∈ V
48 eliin 4889 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘)))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
5046, 49sylibr 237 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
51503exp 1116 . . . . . . . . . . . 12 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))))
5210, 51reximdai 3273 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)))
5352imp 410 . . . . . . . . . 10 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
54 eliun 4888 . . . . . . . . . 10 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
5553, 54sylibr 237 . . . . . . . . 9 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
563, 5, 9, 55syl21anc 836 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
577biimpi 219 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
586, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5958adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
60 nfv 1915 . . . . . . . . . . 11 𝑛𝜑
61 nfcv 2958 . . . . . . . . . . . 12 𝑛𝑥
62 nfv 1915 . . . . . . . . . . . . 13 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
63 nfiu1 4918 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6462, 63nfrabw 3341 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6561, 64nfel 2972 . . . . . . . . . . 11 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6660, 65nfan 1900 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
67 nfv 1915 . . . . . . . . . 10 𝑛(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
68 nfv 1915 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
69 simp1l 1194 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
7069, 26syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
7169, 29syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
7269, 31syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
73 simp1r 1195 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
74 simp2 1134 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
75 simp3 1135 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7668, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75smflimsuplem6 43453 . . . . . . . . . . . 12 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
77763exp 1116 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
785, 77syldan 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
7966, 67, 78rexlimd 3279 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8059, 79mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
8156, 80jca 515 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
82 rabid 3334 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8381, 82sylibr 237 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
8483ex 416 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
85 ssrab2 4010 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
8685a1i 11 . . . . . . . . 9 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
8728eluzelz2 42037 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
8887uzidd 12251 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
8988adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
90 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑛𝑍)
91 xrltso 12526 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → < Or ℝ*)
9392supexd 8905 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
94 eqid 2801 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9590, 93, 94fnmptd 6465 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛))
96 fveq2 6649 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
97 fveq2 6649 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
9897mpteq1d 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9998rneqd 5776 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
10099supeq1d 8898 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
10196, 100mpteq12dv 5118 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
102 fvex 6662 . . . . . . . . . . . . . . . . . . . 20 (𝐸𝑛) ∈ V
103102mptex 6967 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
104101, 34, 103fvmpt 6749 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
105104adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
106105fneq1d 6420 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐻𝑛) Fn (𝐸𝑛) ↔ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛)))
10795, 106mpbird 260 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐻𝑛) Fn (𝐸𝑛))
108107fndmd 6431 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → dom (𝐻𝑛) = (𝐸𝑛))
10997iineq1d 41723 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
110109eleq2d 2878 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
111100eleq1d 2877 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
112110, 111anbi12d 633 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
113112rabbidva2 3426 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
115 fveq2 6649 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
116115mpteq2dv 5129 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
117116rneqd 5776 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
118117supeq1d 8898 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
119118eleq1d 2877 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
120119cbvrabv 3442 . . . . . . . . . . . . . . . . . 18 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
12188ne0d 4254 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
122 fvex 6662 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ∈ V
123122dmex 7602 . . . . . . . . . . . . . . . . . . . . 21 dom (𝐹𝑚) ∈ V
124123rgenw 3121 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
125124a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
126121, 125iinexd 41766 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
127120, 126rabexd 5203 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
12833, 113, 114, 127fvmptd3 6772 . . . . . . . . . . . . . . . 16 (𝑛𝑍 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
129128adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
130 ssrab2 4010 . . . . . . . . . . . . . . . 16 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
131130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
132129, 131eqsstrd 3956 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
133108, 132eqsstrd 3956 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
134 fveq2 6649 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐻𝑘) = (𝐻𝑛))
135134dmeqd 5742 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → dom (𝐻𝑘) = dom (𝐻𝑛))
136135sseq1d 3949 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
137136rspcev 3574 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
13889, 133, 137syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
139 iinss 4946 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
141140ralrimiva 3152 . . . . . . . . . 10 (𝜑 → ∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
142 ss2iun 4902 . . . . . . . . . 10 (∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
143141, 142syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14486, 143sstrd 3928 . . . . . . . 8 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14582simplbi 501 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
14654biimpi 219 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
147145, 146syl 17 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
148147adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
149 nfiu1 4918 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
15067, 149nfrabw 3341 . . . . . . . . . . . . 13 𝑛{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15161, 150nfel 2972 . . . . . . . . . . . 12 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15260, 151nfan 1900 . . . . . . . . . . 11 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
15382simprbi 500 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
154 nfv 1915 . . . . . . . . . . . . . . . 16 𝑘𝜑
155 nfmpt1 5131 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))
156 nfcv 2958 . . . . . . . . . . . . . . . . 17 𝑘dom ⇝
157155, 156nfel 2972 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
158154, 157nfan 1900 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
159 nfv 1915 . . . . . . . . . . . . . . 15 𝑘 𝑛𝑍
160 nfcv 2958 . . . . . . . . . . . . . . . 16 𝑘𝑥
161 nfii1 4919 . . . . . . . . . . . . . . . 16 𝑘 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
162160, 161nfel 2972 . . . . . . . . . . . . . . 15 𝑘 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
163158, 159, 162nf3an 1902 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
16426adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
1651643adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
1661653adant1r 1174 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
16729adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
1681673adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
1691683adant1r 1174 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
17031adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1711703adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1721713adant1r 1174 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
173 simp2 1134 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑛𝑍)
174 simp3 1135 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
175 simp1r 1195 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
176163, 166, 28, 169, 172, 33, 34, 173, 174, 175smflimsuplem4 43451 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
1771763exp 1116 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
178153, 177sylan2 595 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
179152, 62, 178rexlimd 3279 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
180148, 179mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
181180ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
182144, 181jca 515 . . . . . . 7 (𝜑 → ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
183 nfrab1 3340 . . . . . . . 8 𝑥{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
184 nfcv 2958 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
185183, 184ssrabf 41747 . . . . . . 7 ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
186182, 185sylibr 237 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
187186sseld 3917 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}))
18884, 187impbid 215 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
189188alrimiv 1928 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
190 nfrab1 3340 . . . 4 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
191190, 183cleqf 2986 . . 3 ({𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
192189, 191sylibr 237 . 2 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
1932, 192eqtrd 2836 1 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2112  wral 3109  wrex 3110  {crab 3113  Vcvv 3444  wss 3884   ciun 4884   ciin 4885  cmpt 5113   Or wor 5441  dom cdm 5523  ran crn 5524   Fn wfn 6323  wf 6324  cfv 6328  supcsup 8892  cr 10529  *cxr 10667   < clt 10668  cz 11973  cuz 12235  lim supclsp 14823  cli 14837  SAlgcsalg 42947  SMblFncsmblfn 43331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-fz 12890  df-fl 13161  df-ceil 13162  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-smblfn 43332
This theorem is referenced by:  smflimsuplem8  43455
  Copyright terms: Public domain W3C validator