Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem7 Structured version   Visualization version   GIF version

Theorem smflimsuplem7 44753
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem7.m (𝜑𝑀 ∈ ℤ)
smflimsuplem7.z 𝑍 = (ℤ𝑀)
smflimsuplem7.s (𝜑𝑆 ∈ SAlg)
smflimsuplem7.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem7.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem7.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem7.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem7 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Distinct variable groups:   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑘,𝑚,𝑛)   𝑆(𝑥,𝑘,𝑚,𝑛)   𝐸(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem7.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
21a1i 11 . 2 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
3 simpl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝜑)
4 rabidim2 43024 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
54adantl 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6 rabidim1 3425 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7 eliun 4949 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
86, 7sylib 217 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
98adantl 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 nfv 1917 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
11 nfv 1917 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
12 nfcv 2905 . . . . . . . . . . . . . . . . . . . . 21 𝑚lim sup
13 nfmpt1 5204 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
1412, 13nffv 6839 . . . . . . . . . . . . . . . . . . . 20 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
15 nfcv 2905 . . . . . . . . . . . . . . . . . . . 20 𝑚
1614, 15nfel 2919 . . . . . . . . . . . . . . . . . . 19 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
1711, 16nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
18 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛𝑍
19 nfcv 2905 . . . . . . . . . . . . . . . . . . 19 𝑚𝑥
20 nfii1 4980 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2119, 20nfel 2919 . . . . . . . . . . . . . . . . . 18 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2217, 18, 21nf3an 1904 . . . . . . . . . . . . . . . . 17 𝑚((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
23 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑚 𝑘 ∈ (ℤ𝑛)
2422, 23nfan 1902 . . . . . . . . . . . . . . . 16 𝑚(((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛))
25 simpl1l 1224 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
26 smflimsuplem7.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑀 ∈ ℤ)
28 smflimsuplem7.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
29 smflimsuplem7.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ SAlg)
3025, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑆 ∈ SAlg)
31 smflimsuplem7.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
33 smflimsuplem7.e . . . . . . . . . . . . . . . 16 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
34 smflimsuplem7.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
3528uztrn2 12706 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
36353ad2antl2 1186 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
37 simpl1r 1225 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
38 uzss 12710 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
39 iinss1 4960 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4140adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
42 simpl 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4341, 42sseldd 3936 . . . . . . . . . . . . . . . . 17 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
44433ad2antl3 1187 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4524, 27, 28, 30, 32, 33, 34, 36, 37, 44smflimsuplem2 44748 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐻𝑘))
4645ralrimiva 3140 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
47 vex 3446 . . . . . . . . . . . . . . 15 𝑥 ∈ V
48 eliin 4950 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘)))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
5046, 49sylibr 233 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
51503exp 1119 . . . . . . . . . . . 12 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))))
5210, 51reximdai 3241 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)))
5352imp 408 . . . . . . . . . 10 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
54 eliun 4949 . . . . . . . . . 10 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
5553, 54sylibr 233 . . . . . . . . 9 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
563, 5, 9, 55syl21anc 836 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
577biimpi 215 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
586, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5958adantl 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
60 nfv 1917 . . . . . . . . . . 11 𝑛𝜑
61 nfcv 2905 . . . . . . . . . . . 12 𝑛𝑥
62 nfv 1917 . . . . . . . . . . . . 13 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
63 nfiu1 4979 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6462, 63nfrabw 3437 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6561, 64nfel 2919 . . . . . . . . . . 11 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6660, 65nfan 1902 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
67 nfv 1917 . . . . . . . . . 10 𝑛(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
68 nfv 1917 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
69 simp1l 1197 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
7069, 26syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
7169, 29syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
7269, 31syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
73 simp1r 1198 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
74 simp2 1137 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
75 simp3 1138 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7668, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75smflimsuplem6 44752 . . . . . . . . . . . 12 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
77763exp 1119 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
785, 77syldan 592 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
7966, 67, 78rexlimd 3246 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8059, 79mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
8156, 80jca 513 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
82 rabid 3424 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8381, 82sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
8483ex 414 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
85 ssrab2 4028 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
8685a1i 11 . . . . . . . . 9 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
8728eluzelz2 43330 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
8887uzidd 12703 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
8988adantl 483 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
90 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑛𝑍)
91 xrltso 12980 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → < Or ℝ*)
9392supexd 9314 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
94 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9590, 93, 94fnmptd 6629 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛))
96 fveq2 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
97 fveq2 6829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
9897mpteq1d 5191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9998rneqd 5883 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
10099supeq1d 9307 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
10196, 100mpteq12dv 5187 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
102 fvex 6842 . . . . . . . . . . . . . . . . . . . 20 (𝐸𝑛) ∈ V
103102mptex 7159 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
104101, 34, 103fvmpt 6935 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
105104adantl 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
106105fneq1d 6582 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐻𝑛) Fn (𝐸𝑛) ↔ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛)))
10795, 106mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐻𝑛) Fn (𝐸𝑛))
108107fndmd 6594 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → dom (𝐻𝑛) = (𝐸𝑛))
10997iineq1d 43012 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
110109eleq2d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
111100eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
112110, 111anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
113112rabbidva2 3406 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
115 fveq2 6829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
116115mpteq2dv 5198 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
117116rneqd 5883 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
118117supeq1d 9307 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
119118eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
120119cbvrabv 3414 . . . . . . . . . . . . . . . . . 18 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
12188ne0d 4286 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
122 fvex 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ∈ V
123122dmex 7830 . . . . . . . . . . . . . . . . . . . . 21 dom (𝐹𝑚) ∈ V
124123rgenw 3066 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
125124a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
126121, 125iinexd 43055 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
127120, 126rabexd 5281 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
12833, 113, 114, 127fvmptd3 6958 . . . . . . . . . . . . . . . 16 (𝑛𝑍 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
129128adantl 483 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
130 ssrab2 4028 . . . . . . . . . . . . . . . 16 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
131130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
132129, 131eqsstrd 3973 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
133108, 132eqsstrd 3973 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
134 fveq2 6829 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐻𝑘) = (𝐻𝑛))
135134dmeqd 5851 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → dom (𝐻𝑘) = dom (𝐻𝑛))
136135sseq1d 3966 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
137136rspcev 3573 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
13889, 133, 137syl2anc 585 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
139 iinss 5007 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
141140ralrimiva 3140 . . . . . . . . . 10 (𝜑 → ∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
142 ss2iun 4963 . . . . . . . . . 10 (∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
143141, 142syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14486, 143sstrd 3945 . . . . . . . 8 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14582simplbi 499 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
14654biimpi 215 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
147145, 146syl 17 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
148147adantl 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
149 nfiu1 4979 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
15067, 149nfrabw 3437 . . . . . . . . . . . . 13 𝑛{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15161, 150nfel 2919 . . . . . . . . . . . 12 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15260, 151nfan 1902 . . . . . . . . . . 11 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
15382simprbi 498 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
154 nfv 1917 . . . . . . . . . . . . . . . 16 𝑘𝜑
155 nfmpt1 5204 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))
156 nfcv 2905 . . . . . . . . . . . . . . . . 17 𝑘dom ⇝
157155, 156nfel 2919 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
158154, 157nfan 1902 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
159 nfv 1917 . . . . . . . . . . . . . . 15 𝑘 𝑛𝑍
160 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑘𝑥
161 nfii1 4980 . . . . . . . . . . . . . . . 16 𝑘 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
162160, 161nfel 2919 . . . . . . . . . . . . . . 15 𝑘 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
163158, 159, 162nf3an 1904 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
16426adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
1651643adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
1661653adant1r 1177 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
16729adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
1681673adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
1691683adant1r 1177 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
17031adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1711703adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1721713adant1r 1177 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
173 simp2 1137 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑛𝑍)
174 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
175 simp1r 1198 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
176163, 166, 28, 169, 172, 33, 34, 173, 174, 175smflimsuplem4 44750 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
1771763exp 1119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
178153, 177sylan2 594 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
179152, 62, 178rexlimd 3246 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
180148, 179mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
181180ralrimiva 3140 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
182144, 181jca 513 . . . . . . 7 (𝜑 → ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
183 nfrab1 3423 . . . . . . . 8 𝑥{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
184 nfcv 2905 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
185183, 184ssrabf 43036 . . . . . . 7 ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
186182, 185sylibr 233 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
187186sseld 3934 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}))
18884, 187impbid 211 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
189188alrimiv 1930 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
190 nfrab1 3423 . . . 4 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
191190, 183cleqf 2936 . . 3 ({𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
192189, 191sylibr 233 . 2 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
1932, 192eqtrd 2777 1 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wral 3062  wrex 3071  {crab 3404  Vcvv 3442  wss 3901   ciun 4945   ciin 4946  cmpt 5179   Or wor 5535  dom cdm 5624  ran crn 5625   Fn wfn 6478  wf 6479  cfv 6483  supcsup 9301  cr 10975  *cxr 11113   < clt 11114  cz 12424  cuz 12687  lim supclsp 15278  cli 15292  SAlgcsalg 44237  SMblFncsmblfn 44622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-pm 8693  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-q 12794  df-rp 12836  df-ioo 13188  df-ico 13190  df-fz 13345  df-fl 13617  df-ceil 13618  df-seq 13827  df-exp 13888  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-smblfn 44623
This theorem is referenced by:  smflimsuplem8  44754
  Copyright terms: Public domain W3C validator