Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem7 Structured version   Visualization version   GIF version

Theorem smflimsuplem7 46808
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem7.m (𝜑𝑀 ∈ ℤ)
smflimsuplem7.z 𝑍 = (ℤ𝑀)
smflimsuplem7.s (𝜑𝑆 ∈ SAlg)
smflimsuplem7.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem7.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem7.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem7.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem7 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Distinct variable groups:   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑘,𝑚,𝑛)   𝑆(𝑥,𝑘,𝑚,𝑛)   𝐸(𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem7.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
21a1i 11 . 2 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
3 simpl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝜑)
4 rabidim2 45080 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
54adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
6 rabidim1 3419 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7 eliun 4948 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
86, 7sylib 218 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
98adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
10 nfv 1914 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
11 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑚𝜑
12 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑚lim sup
13 nfmpt1 5194 . . . . . . . . . . . . . . . . . . . . 21 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
1412, 13nffv 6836 . . . . . . . . . . . . . . . . . . . 20 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
15 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑚
1614, 15nfel 2906 . . . . . . . . . . . . . . . . . . 19 𝑚(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
1711, 16nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑚(𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
18 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑚 𝑛𝑍
19 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑚𝑥
20 nfii1 4982 . . . . . . . . . . . . . . . . . . 19 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2119, 20nfel 2906 . . . . . . . . . . . . . . . . . 18 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2217, 18, 21nf3an 1901 . . . . . . . . . . . . . . . . 17 𝑚((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
23 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚 𝑘 ∈ (ℤ𝑛)
2422, 23nfan 1899 . . . . . . . . . . . . . . . 16 𝑚(((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛))
25 simpl1l 1225 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
26 smflimsuplem7.m . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑀 ∈ ℤ)
28 smflimsuplem7.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ𝑀)
29 smflimsuplem7.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ SAlg)
3025, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑆 ∈ SAlg)
31 smflimsuplem7.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3225, 31syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
33 smflimsuplem7.e . . . . . . . . . . . . . . . 16 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
34 smflimsuplem7.h . . . . . . . . . . . . . . . 16 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
3528uztrn2 12772 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
36353ad2antl2 1187 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘𝑍)
37 simpl1r 1226 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
38 uzss 12776 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
39 iinss1 4960 . . . . . . . . . . . . . . . . . . . 20 ((ℤ𝑘) ⊆ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4140adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
42 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4341, 42sseldd 3938 . . . . . . . . . . . . . . . . 17 ((𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
44433ad2antl3 1188 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
4524, 27, 28, 30, 32, 33, 34, 36, 37, 44smflimsuplem2 46803 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑥 ∈ dom (𝐻𝑘))
4645ralrimiva 3121 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
47 vex 3442 . . . . . . . . . . . . . . 15 𝑥 ∈ V
48 eliin 4949 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘)))
4947, 48ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)𝑥 ∈ dom (𝐻𝑘))
5046, 49sylibr 234 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
51503exp 1119 . . . . . . . . . . . 12 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))))
5210, 51reximdai 3231 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)))
5352imp 406 . . . . . . . . . 10 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
54 eliun 4948 . . . . . . . . . 10 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ↔ ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
5553, 54sylibr 234 . . . . . . . . 9 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
563, 5, 9, 55syl21anc 837 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
577biimpi 216 . . . . . . . . . . 11 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
586, 57syl 17 . . . . . . . . . 10 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5958adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
60 nfv 1914 . . . . . . . . . . 11 𝑛𝜑
61 nfcv 2891 . . . . . . . . . . . 12 𝑛𝑥
62 nfv 1914 . . . . . . . . . . . . 13 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
63 nfiu1 4980 . . . . . . . . . . . . 13 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6462, 63nfrabw 3434 . . . . . . . . . . . 12 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6561, 64nfel 2906 . . . . . . . . . . 11 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6660, 65nfan 1899 . . . . . . . . . 10 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
67 nfv 1914 . . . . . . . . . 10 𝑛(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
68 nfv 1914 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
69 simp1l 1198 . . . . . . . . . . . . . 14 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
7069, 26syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
7169, 29syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
7269, 31syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
73 simp1r 1199 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
74 simp2 1137 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
75 simp3 1138 . . . . . . . . . . . . 13 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
7668, 22, 70, 28, 71, 72, 33, 34, 73, 74, 75smflimsuplem6 46807 . . . . . . . . . . . 12 (((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
77763exp 1119 . . . . . . . . . . 11 ((𝜑 ∧ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
785, 77syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )))
7966, 67, 78rexlimd 3236 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8059, 79mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
8156, 80jca 511 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
82 rabid 3418 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ))
8381, 82sylibr 234 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}) → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
8483ex 412 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
85 ssrab2 4033 . . . . . . . . . 10 {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
8685a1i 11 . . . . . . . . 9 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
8728eluzelz2 45383 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
8887uzidd 12769 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ (ℤ𝑛))
8988adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑛))
90 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑛𝑍)
91 xrltso 13061 . . . . . . . . . . . . . . . . . . 19 < Or ℝ*
9291a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → < Or ℝ*)
9392supexd 9362 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
94 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
9590, 93, 94fnmptd 6627 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛))
96 fveq2 6826 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (𝐸𝑘) = (𝐸𝑛))
97 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (ℤ𝑘) = (ℤ𝑛))
9897mpteq1d 5185 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
9998rneqd 5884 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
10099supeq1d 9355 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
10196, 100mpteq12dv 5182 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
102 fvex 6839 . . . . . . . . . . . . . . . . . . . 20 (𝐸𝑛) ∈ V
103102mptex 7163 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
104101, 34, 103fvmpt 6934 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
105104adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
106105fneq1d 6579 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐻𝑛) Fn (𝐸𝑛) ↔ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) Fn (𝐸𝑛)))
10795, 106mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐻𝑛) Fn (𝐸𝑛))
108107fndmd 6591 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → dom (𝐻𝑛) = (𝐸𝑛))
10997iineq1d 45068 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
110109eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ↔ 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
111100eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → (sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
112110, 111anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → ((𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ) ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)))
113112rabbidva2 3398 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
114 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
115 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
116115mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
117116rneqd 5884 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
118117supeq1d 9355 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
119118eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
120119cbvrabv 3407 . . . . . . . . . . . . . . . . . 18 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
12188ne0d 4295 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
122 fvex 6839 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑚) ∈ V
123122dmex 7849 . . . . . . . . . . . . . . . . . . . . 21 dom (𝐹𝑚) ∈ V
124123rgenw 3048 . . . . . . . . . . . . . . . . . . . 20 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
125124a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
126121, 125iinexd 45111 . . . . . . . . . . . . . . . . . 18 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
127120, 126rabexd 5282 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
12833, 113, 114, 127fvmptd3 6957 . . . . . . . . . . . . . . . 16 (𝑛𝑍 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
129128adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
130 ssrab2 4033 . . . . . . . . . . . . . . . 16 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
131130a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
132129, 131eqsstrd 3972 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
133108, 132eqsstrd 3972 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
134 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐻𝑘) = (𝐻𝑛))
135134dmeqd 5852 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → dom (𝐻𝑘) = dom (𝐻𝑛))
136135sseq1d 3969 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)))
137136rspcev 3579 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑛) ∧ dom (𝐻𝑛) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
13889, 133, 137syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
139 iinss 5008 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
141140ralrimiva 3121 . . . . . . . . . 10 (𝜑 → ∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
142 ss2iun 4963 . . . . . . . . . 10 (∀𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
143141, 142syl 17 . . . . . . . . 9 (𝜑 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14486, 143sstrd 3948 . . . . . . . 8 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14582simplbi 497 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
14654biimpi 216 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
147145, 146syl 17 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
148147adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → ∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
149 nfiu1 4980 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
15067, 149nfrabw 3434 . . . . . . . . . . . . 13 𝑛{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15161, 150nfel 2906 . . . . . . . . . . . 12 𝑛 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
15260, 151nfan 1899 . . . . . . . . . . 11 𝑛(𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
15382simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
154 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘𝜑
155 nfmpt1 5194 . . . . . . . . . . . . . . . . 17 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))
156 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘dom ⇝
157155, 156nfel 2906 . . . . . . . . . . . . . . . 16 𝑘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝
158154, 157nfan 1899 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
159 nfv 1914 . . . . . . . . . . . . . . 15 𝑘 𝑛𝑍
160 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑘𝑥
161 nfii1 4982 . . . . . . . . . . . . . . . 16 𝑘 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
162160, 161nfel 2906 . . . . . . . . . . . . . . 15 𝑘 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)
163158, 159, 162nf3an 1901 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
16426adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
1651643adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
1661653adant1r 1178 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑀 ∈ ℤ)
16729adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
1681673adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
1691683adant1r 1178 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑆 ∈ SAlg)
17031adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1711703adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
1721713adant1r 1178 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
173 simp2 1137 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑛𝑍)
174 simp3 1138 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘))
175 simp1r 1199 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ )
176163, 166, 28, 169, 172, 33, 34, 173, 174, 175smflimsuplem4 46805 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
1771763exp 1119 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
178153, 177sylan2 593 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (𝑛𝑍 → (𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)))
179152, 62, 178rexlimd 3236 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (∃𝑛𝑍 𝑥 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
180148, 179mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
181180ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
182144, 181jca 511 . . . . . . 7 (𝜑 → ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
183 nfrab1 3417 . . . . . . . 8 𝑥{𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }
184 nfcv 2891 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
185183, 184ssrabf 45092 . . . . . . 7 ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ ({𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ ∀𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ))
186182, 185sylibr 234 . . . . . 6 (𝜑 → {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ⊆ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ})
187186sseld 3936 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } → 𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}))
18884, 187impbid 212 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
189188alrimiv 1927 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
190 nfrab1 3417 . . . 4 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
191190, 183cleqf 2920 . . 3 ({𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↔ ∀𝑥(𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} ↔ 𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ }))
192189, 191sylibr 234 . 2 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
1932, 192eqtrd 2764 1 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905   ciun 4944   ciin 4945  cmpt 5176   Or wor 5530  dom cdm 5623  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  supcsup 9349  cr 11027  *cxr 11167   < clt 11168  cz 12489  cuz 12753  lim supclsp 15395  cli 15409  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fz 13429  df-fl 13714  df-ceil 13715  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-smblfn 46678
This theorem is referenced by:  smflimsuplem8  46809
  Copyright terms: Public domain W3C validator