Proof of Theorem iununi
| Step | Hyp | Ref
| Expression |
| 1 | | df-ne 2934 |
. . . . . . 7
⊢ (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅) |
| 2 | | iunconst 4982 |
. . . . . . 7
⊢ (𝐵 ≠ ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴) |
| 3 | 1, 2 | sylbir 235 |
. . . . . 6
⊢ (¬
𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴) |
| 4 | | iun0 5043 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ 𝐵 ∅ = ∅ |
| 5 | | id 22 |
. . . . . . . 8
⊢ (𝐴 = ∅ → 𝐴 = ∅) |
| 6 | 5 | iuneq2d 5003 |
. . . . . . 7
⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = ∪ 𝑥 ∈ 𝐵 ∅) |
| 7 | 4, 6, 5 | 3eqtr4a 2797 |
. . . . . 6
⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴) |
| 8 | 3, 7 | ja 186 |
. . . . 5
⊢ ((𝐵 = ∅ → 𝐴 = ∅) → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴) |
| 9 | 8 | eqcomd 2742 |
. . . 4
⊢ ((𝐵 = ∅ → 𝐴 = ∅) → 𝐴 = ∪ 𝑥 ∈ 𝐵 𝐴) |
| 10 | 9 | uneq1d 4147 |
. . 3
⊢ ((𝐵 = ∅ → 𝐴 = ∅) → (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥) = (∪
𝑥 ∈ 𝐵 𝐴 ∪ ∪
𝑥 ∈ 𝐵 𝑥)) |
| 11 | | uniiun 5039 |
. . . 4
⊢ ∪ 𝐵 =
∪ 𝑥 ∈ 𝐵 𝑥 |
| 12 | 11 | uneq2i 4145 |
. . 3
⊢ (𝐴 ∪ ∪ 𝐵) =
(𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥) |
| 13 | | iunun 5074 |
. . 3
⊢ ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = (∪
𝑥 ∈ 𝐵 𝐴 ∪ ∪
𝑥 ∈ 𝐵 𝑥) |
| 14 | 10, 12, 13 | 3eqtr4g 2796 |
. 2
⊢ ((𝐵 = ∅ → 𝐴 = ∅) → (𝐴 ∪ ∪ 𝐵) =
∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥)) |
| 15 | | unieq 4899 |
. . . . . . 7
⊢ (𝐵 = ∅ → ∪ 𝐵 =
∪ ∅) |
| 16 | | uni0 4916 |
. . . . . . 7
⊢ ∪ ∅ = ∅ |
| 17 | 15, 16 | eqtrdi 2787 |
. . . . . 6
⊢ (𝐵 = ∅ → ∪ 𝐵 =
∅) |
| 18 | 17 | uneq2d 4148 |
. . . . 5
⊢ (𝐵 = ∅ → (𝐴 ∪ ∪ 𝐵) =
(𝐴 ∪
∅)) |
| 19 | | un0 4374 |
. . . . 5
⊢ (𝐴 ∪ ∅) = 𝐴 |
| 20 | 18, 19 | eqtrdi 2787 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 ∪ ∪ 𝐵) =
𝐴) |
| 21 | | iuneq1 4989 |
. . . . 5
⊢ (𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = ∪ 𝑥 ∈ ∅ (𝐴 ∪ 𝑥)) |
| 22 | | 0iun 5044 |
. . . . 5
⊢ ∪ 𝑥 ∈ ∅ (𝐴 ∪ 𝑥) = ∅ |
| 23 | 21, 22 | eqtrdi 2787 |
. . . 4
⊢ (𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) = ∅) |
| 24 | 20, 23 | eqeq12d 2752 |
. . 3
⊢ (𝐵 = ∅ → ((𝐴 ∪ ∪ 𝐵) =
∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) ↔ 𝐴 = ∅)) |
| 25 | 24 | biimpcd 249 |
. 2
⊢ ((𝐴 ∪ ∪ 𝐵) =
∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥) → (𝐵 = ∅ → 𝐴 = ∅)) |
| 26 | 14, 25 | impbii 209 |
1
⊢ ((𝐵 = ∅ → 𝐴 = ∅) ↔ (𝐴 ∪ ∪ 𝐵) =
∪ 𝑥 ∈ 𝐵 (𝐴 ∪ 𝑥)) |