MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint2 Structured version   Visualization version   GIF version

Theorem elint2 4902
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1 𝐴 ∈ V
Assertion
Ref Expression
elint2 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3 𝐴 ∈ V
21elint 4901 . 2 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
3 df-ral 3048 . 2 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
42, 3bitr4i 278 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2111  wral 3047  Vcvv 3436   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-int 4896
This theorem is referenced by:  int0  4910  ssint  4912  intssuni  4918  iinuni  5044  onint  7723  intwun  10626  inttsk  10665  intgru  10705  subgint  19063  subrngint  20475  subrgint  20510  lssintcl  20897  toponmre  23008  alexsubALTlem3  23964  shintcli  31309  chintcli  31311  intlidl  33385  fin2so  37655  intidl  38077  mzpincl  42775  elimaint  43690  elintima  43694  intsal  46376  salgencntex  46389
  Copyright terms: Public domain W3C validator