| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| elint2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elint 4912 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∩ cint 4906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-int 4907 |
| This theorem is referenced by: int0 4922 ssint 4924 intssuni 4930 iinuni 5057 onint 7746 intwun 10664 inttsk 10703 intgru 10743 subgint 19058 subrngint 20445 subrgint 20480 lssintcl 20846 toponmre 22956 alexsubALTlem3 23912 shintcli 31231 chintcli 31233 intlidl 33364 fin2so 37574 intidl 37996 mzpincl 42695 elimaint 43611 elintima 43615 intsal 46301 salgencntex 46314 |
| Copyright terms: Public domain | W3C validator |