| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| elint2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elint 4902 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 3 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∩ cint 4896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-int 4897 |
| This theorem is referenced by: int0 4912 ssint 4914 intssuni 4920 iinuni 5047 onint 7726 intwun 10629 inttsk 10668 intgru 10708 subgint 19029 subrngint 20445 subrgint 20480 lssintcl 20867 toponmre 22978 alexsubALTlem3 23934 shintcli 31273 chintcli 31275 intlidl 33357 fin2so 37587 intidl 38009 mzpincl 42707 elimaint 43622 elintima 43626 intsal 46311 salgencntex 46324 |
| Copyright terms: Public domain | W3C validator |