![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
elint2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4950 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
3 | df-ral 3057 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ∩ cint 4944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-int 4945 |
This theorem is referenced by: int0 4960 ssint 4962 intssuni 4968 iinuni 5095 onint 7787 intwun 10750 inttsk 10789 intgru 10829 subgint 19096 subrngint 20486 subrgint 20523 lssintcl 20837 toponmre 22984 alexsubALTlem3 23940 shintcli 31126 chintcli 31128 intlidl 33069 fin2so 37015 intidl 37437 mzpincl 42076 elimaint 43002 elintima 43006 intsal 45641 salgencntex 45654 |
Copyright terms: Public domain | W3C validator |