![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
elint2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4957 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
3 | df-ral 3060 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-int 4952 |
This theorem is referenced by: int0 4967 ssint 4969 intssuni 4975 iinuni 5103 onint 7810 intwun 10773 inttsk 10812 intgru 10852 subgint 19181 subrngint 20577 subrgint 20612 lssintcl 20980 toponmre 23117 alexsubALTlem3 24073 shintcli 31358 chintcli 31360 intlidl 33428 fin2so 37594 intidl 38016 mzpincl 42722 elimaint 43639 elintima 43643 intsal 46286 salgencntex 46299 |
Copyright terms: Public domain | W3C validator |