MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint2 Structured version   Visualization version   GIF version

Theorem elint2 4883
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1 𝐴 ∈ V
Assertion
Ref Expression
elint2 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3 𝐴 ∈ V
21elint 4882 . 2 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
3 df-ral 3068 . 2 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
42, 3bitr4i 277 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  wral 3063  Vcvv 3422   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-int 4877
This theorem is referenced by:  int0  4890  ssint  4892  intssuni  4898  iinuni  5023  onint  7617  intwun  10422  inttsk  10461  intgru  10501  subgint  18694  subrgint  19961  lssintcl  20141  toponmre  22152  alexsubALTlem3  23108  shintcli  29592  chintcli  29594  intlidl  31504  fin2so  35691  intidl  36114  mzpincl  40472  elimaint  41146  elintima  41150  intsal  43759  salgencntex  43772
  Copyright terms: Public domain W3C validator