| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| elint2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elint 4925 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 3 | df-ral 3051 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∈ wcel 2107 ∀wral 3050 Vcvv 3457 ∩ cint 4919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-int 4920 |
| This theorem is referenced by: int0 4935 ssint 4937 intssuni 4943 iinuni 5071 onint 7778 intwun 10741 inttsk 10780 intgru 10820 subgint 19118 subrngint 20505 subrgint 20540 lssintcl 20906 toponmre 23016 alexsubALTlem3 23972 shintcli 31242 chintcli 31244 intlidl 33353 fin2so 37552 intidl 37974 mzpincl 42682 elimaint 43598 elintima 43602 intsal 46289 salgencntex 46302 |
| Copyright terms: Public domain | W3C validator |