![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
elint2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4976 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
3 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-int 4971 |
This theorem is referenced by: int0 4986 ssint 4988 intssuni 4994 iinuni 5121 onint 7826 intwun 10804 inttsk 10843 intgru 10883 subgint 19190 subrngint 20586 subrgint 20623 lssintcl 20985 toponmre 23122 alexsubALTlem3 24078 shintcli 31361 chintcli 31363 intlidl 33413 fin2so 37567 intidl 37989 mzpincl 42690 elimaint 43611 elintima 43615 intsal 46251 salgencntex 46264 |
Copyright terms: Public domain | W3C validator |