Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
elint2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4882 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
3 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
4 | 2, 3 | bitr4i 277 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-int 4877 |
This theorem is referenced by: int0 4890 ssint 4892 intssuni 4898 iinuni 5023 onint 7617 intwun 10422 inttsk 10461 intgru 10501 subgint 18694 subrgint 19961 lssintcl 20141 toponmre 22152 alexsubALTlem3 23108 shintcli 29592 chintcli 29594 intlidl 31504 fin2so 35691 intidl 36114 mzpincl 40472 elimaint 41146 elintima 41150 intsal 43759 salgencntex 43772 |
Copyright terms: Public domain | W3C validator |