| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| elint2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elint 4933 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 3 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
| 4 | 2, 3 | bitr4i 278 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-int 4928 |
| This theorem is referenced by: int0 4943 ssint 4945 intssuni 4951 iinuni 5079 onint 7789 intwun 10754 inttsk 10793 intgru 10833 subgint 19138 subrngint 20525 subrgint 20560 lssintcl 20926 toponmre 23036 alexsubALTlem3 23992 shintcli 31315 chintcli 31317 intlidl 33440 fin2so 37636 intidl 38058 mzpincl 42724 elimaint 43640 elintima 43644 intsal 46326 salgencntex 46339 |
| Copyright terms: Public domain | W3C validator |