MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpind Structured version   Visualization version   GIF version

Theorem relexpind 14047
Description: Principle of transitive induction, finite version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.)
Hypotheses
Ref Expression
relexpind.1 (𝜂 → Rel 𝑅)
relexpind.2 (𝜂𝑅 ∈ V)
relexpind.3 (𝜂𝑆 ∈ V)
relexpind.4 (𝜂𝑋 ∈ V)
relexpind.5 (𝑖 = 𝑆 → (𝜑𝜒))
relexpind.6 (𝑖 = 𝑥 → (𝜑𝜓))
relexpind.7 (𝑖 = 𝑗 → (𝜑𝜃))
relexpind.8 (𝑥 = 𝑋 → (𝜓𝜏))
relexpind.9 (𝜂𝜒)
relexpind.10 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
Assertion
Ref Expression
relexpind (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))
Distinct variable groups:   𝑖,𝑗,𝑥,𝑅   𝑆,𝑖,𝑗,𝑥   𝑥,𝑋   𝑥,𝑛   𝜑,𝑗,𝑥   𝜓,𝑖,𝑗   𝜒,𝑖   𝜃,𝑖   𝜏,𝑥   𝜂,𝑖,𝑗,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝜓(𝑥,𝑛)   𝜒(𝑥,𝑗,𝑛)   𝜃(𝑥,𝑗,𝑛)   𝜏(𝑖,𝑗,𝑛)   𝜂(𝑛)   𝑅(𝑛)   𝑆(𝑛)   𝑋(𝑖,𝑗,𝑛)

Proof of Theorem relexpind
StepHypRef Expression
1 relexpind.4 . 2 (𝜂𝑋 ∈ V)
2 relexpind.8 . . . 4 (𝑥 = 𝑋 → (𝜓𝜏))
3 breq2 4859 . . . . . . . 8 (𝑥 = 𝑋 → (𝑆(𝑅𝑟𝑛)𝑥𝑆(𝑅𝑟𝑛)𝑋))
43imbi1d 332 . . . . . . 7 (𝑥 = 𝑋 → ((𝑆(𝑅𝑟𝑛)𝑥𝜏) ↔ (𝑆(𝑅𝑟𝑛)𝑋𝜏)))
54imbi2d 331 . . . . . 6 (𝑥 = 𝑋 → ((𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜏)) ↔ (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏))))
65imbi2d 331 . . . . 5 (𝑥 = 𝑋 → ((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜏))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))))
7 imbi2 339 . . . . . . . 8 ((𝜓𝜏) → ((𝑆(𝑅𝑟𝑛)𝑥𝜓) ↔ (𝑆(𝑅𝑟𝑛)𝑥𝜏)))
87imbi2d 331 . . . . . . 7 ((𝜓𝜏) → ((𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓)) ↔ (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜏))))
98imbi2d 331 . . . . . 6 ((𝜓𝜏) → ((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜏)))))
109bibi1d 334 . . . . 5 ((𝜓𝜏) → (((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))) ↔ ((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜏))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏))))))
116, 10syl5ibr 237 . . . 4 ((𝜓𝜏) → (𝑥 = 𝑋 → ((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏))))))
122, 11mpcom 38 . . 3 (𝑥 = 𝑋 → ((𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓))) ↔ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))))
13 relexpind.1 . . . 4 (𝜂 → Rel 𝑅)
14 relexpind.2 . . . 4 (𝜂𝑅 ∈ V)
15 relexpind.3 . . . 4 (𝜂𝑆 ∈ V)
16 relexpind.5 . . . 4 (𝑖 = 𝑆 → (𝜑𝜒))
17 relexpind.6 . . . 4 (𝑖 = 𝑥 → (𝜑𝜓))
18 relexpind.7 . . . 4 (𝑖 = 𝑗 → (𝜑𝜃))
19 relexpind.9 . . . 4 (𝜂𝜒)
20 relexpind.10 . . . 4 (𝜂 → (𝑗𝑅𝑥 → (𝜃𝜓)))
2113, 14, 15, 16, 17, 18, 19, 20relexpindlem 14046 . . 3 (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑥𝜓)))
2212, 21vtoclg 3470 . 2 (𝑋 ∈ V → (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏))))
231, 22mpcom 38 1 (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅𝑟𝑛)𝑋𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197   = wceq 1637  wcel 2157  Vcvv 3402   class class class wbr 4855  Rel wrel 5329  (class class class)co 6884  0cn0 11579  𝑟crelexp 14003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-n0 11580  df-z 11664  df-uz 11925  df-seq 13045  df-relexp 14004
This theorem is referenced by:  rtrclind  14048
  Copyright terms: Public domain W3C validator