![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbeq2gVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of csbeq2 3913.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3913 is csbeq2gVD 44890 without virtual deductions and was
automatically derived from csbeq2gVD 44890.
|
Ref | Expression |
---|---|
csbeq2gVD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 44572 | . . . 4 ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 ) | |
2 | spsbc 3804 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶)) | |
3 | 1, 2 | e1a 44625 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ) |
4 | sbceqg 4418 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
5 | 1, 4 | e1a 44625 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
6 | imbi2 348 | . . . 4 ⊢ (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ↔ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) | |
7 | 6 | biimpcd 249 | . . 3 ⊢ ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) → (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) |
8 | 3, 5, 7 | e11 44686 | . 2 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
9 | 8 | in1 44569 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2106 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-sbc 3792 df-csb 3909 df-vd1 44568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |