![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbeq2gVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of csbeq2 3893.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3893 is csbeq2gVD 44229 without virtual deductions and was
automatically derived from csbeq2gVD 44229.
|
Ref | Expression |
---|---|
csbeq2gVD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 43911 | . . . 4 ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 ) | |
2 | spsbc 3785 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶)) | |
3 | 1, 2 | e1a 43964 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ) |
4 | sbceqg 4404 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
5 | 1, 4 | e1a 43964 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
6 | imbi2 348 | . . . 4 ⊢ (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ↔ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) | |
7 | 6 | biimpcd 248 | . . 3 ⊢ ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) → (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) |
8 | 3, 5, 7 | e11 44025 | . 2 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
9 | 8 | in1 43908 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 [wsbc 3772 ⦋csb 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-sbc 3773 df-csb 3889 df-vd1 43907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |