Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbeq2gVD Structured version   Visualization version   GIF version

Theorem csbeq2gVD 42512
Description: Virtual deduction proof of csbeq2 3837. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2 3837 is csbeq2gVD 42512 without virtual deductions and was automatically derived from csbeq2gVD 42512.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶[𝐴 / 𝑥] 𝐵 = 𝐶)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
4:2,3: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶)   )
qed:4: (𝐴𝑉 → (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbeq2gVD (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem csbeq2gVD
StepHypRef Expression
1 idn1 42194 . . . 4 (   𝐴𝑉   ▶   𝐴𝑉   )
2 spsbc 3729 . . . 4 (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
31, 2e1a 42247 . . 3 (   𝐴𝑉   ▶   (∀𝑥 𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶)   )
4 sbceqg 4343 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
51, 4e1a 42247 . . 3 (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
6 imbi2 349 . . . 4 (([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶) → ((∀𝑥 𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶) ↔ (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)))
76biimpcd 248 . . 3 ((∀𝑥 𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶) → (([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶) → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)))
83, 5, 7e11 42308 . 2 (   𝐴𝑉   ▶   (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
98in1 42191 1 (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-sbc 3717  df-csb 3833  df-vd1 42190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator