| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbeq2gVD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of csbeq2 3851.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3851 is csbeq2gVD 45008 without virtual deductions and was
automatically derived from csbeq2gVD 45008.
|
| Ref | Expression |
|---|---|
| csbeq2gVD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44691 | . . . 4 ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 ) | |
| 2 | spsbc 3750 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶)) | |
| 3 | 1, 2 | e1a 44744 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ) |
| 4 | sbceqg 4361 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 5 | 1, 4 | e1a 44744 | . . 3 ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
| 6 | imbi2 348 | . . . 4 ⊢ (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) ↔ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) | |
| 7 | 6 | biimpcd 249 | . . 3 ⊢ ((∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶) → (([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶))) |
| 8 | 3, 5, 7 | e11 44805 | . 2 ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) ) |
| 9 | 8 | in1 44688 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 [wsbc 3737 ⦋csb 3846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-sbc 3738 df-csb 3847 df-vd1 44687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |