![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indifcom | Structured version Visualization version GIF version |
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
indifcom | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4193 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | difeq1i 4110 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐵 ∩ 𝐴) ∖ 𝐶) |
3 | indif2 4262 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
4 | indif2 4262 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3937 ∩ cin 3939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 |
This theorem is referenced by: ufprim 23723 cmmbl 25373 unmbl 25376 volinun 25385 limciun 25733 caragenuncllem 45679 |
Copyright terms: Public domain | W3C validator |