MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifcom Structured version   Visualization version   GIF version

Theorem indifcom 4282
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
Assertion
Ref Expression
indifcom (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem indifcom
StepHypRef Expression
1 incom 4208 . . 3 (𝐴𝐵) = (𝐵𝐴)
21difeq1i 4121 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐵𝐴) ∖ 𝐶)
3 indif2 4280 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 indif2 4280 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
52, 3, 43eqtr4i 2774 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3947  cin 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-in 3957
This theorem is referenced by:  ufprim  23918  cmmbl  25570  unmbl  25573  volinun  25582  limciun  25930  caragenuncllem  46532
  Copyright terms: Public domain W3C validator