MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indifcom Structured version   Visualization version   GIF version

Theorem indifcom 4263
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
Assertion
Ref Expression
indifcom (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))

Proof of Theorem indifcom
StepHypRef Expression
1 incom 4189 . . 3 (𝐴𝐵) = (𝐵𝐴)
21difeq1i 4102 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐵𝐴) ∖ 𝐶)
3 indif2 4261 . 2 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 indif2 4261 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
52, 3, 43eqtr4i 2769 1 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3928  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938
This theorem is referenced by:  ufprim  23852  cmmbl  25492  unmbl  25495  volinun  25504  limciun  25852  caragenuncllem  46521
  Copyright terms: Public domain W3C validator