Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indifcom | Structured version Visualization version GIF version |
Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
indifcom | ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | difeq1i 4049 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐵 ∩ 𝐴) ∖ 𝐶) |
3 | indif2 4201 | . 2 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | |
4 | indif2 4201 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
5 | 2, 3, 4 | 3eqtr4i 2776 | 1 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 |
This theorem is referenced by: ufprim 22968 cmmbl 24603 unmbl 24606 volinun 24615 limciun 24963 caragenuncllem 43940 |
Copyright terms: Public domain | W3C validator |