Proof of Theorem ufprim
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ufilfil 23912 | . . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | 
| 2 | 1 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → 𝐹 ∈ (Fil‘𝑋)) | 
| 3 | 2 | adantr 480 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | 
| 4 |  | simpr 484 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | 
| 5 |  | unss 4190 | . . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) | 
| 6 | 5 | biimpi 216 | . . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) | 
| 7 | 6 | 3adant1 1131 | . . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) | 
| 8 | 7 | adantr 480 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∪ 𝐵) ⊆ 𝑋) | 
| 9 |  | ssun1 4178 | . . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | 
| 10 | 9 | a1i 11 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝐴 ∪ 𝐵)) | 
| 11 |  | filss 23861 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋 ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵))) → (𝐴 ∪ 𝐵) ∈ 𝐹) | 
| 12 | 3, 4, 8, 10, 11 | syl13anc 1374 | . . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹) | 
| 13 | 12 | ex 412 | . . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∈ 𝐹 → (𝐴 ∪ 𝐵) ∈ 𝐹)) | 
| 14 | 2 | adantr 480 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | 
| 15 |  | simpr 484 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐵 ∈ 𝐹) | 
| 16 | 7 | adantr 480 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ⊆ 𝑋) | 
| 17 |  | ssun2 4179 | . . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | 
| 18 | 17 | a1i 11 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) | 
| 19 |  | filss 23861 | . . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐵 ∈ 𝐹 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋 ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵))) → (𝐴 ∪ 𝐵) ∈ 𝐹) | 
| 20 | 14, 15, 16, 18, 19 | syl13anc 1374 | . . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹) | 
| 21 | 20 | ex 412 | . . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐵 ∈ 𝐹 → (𝐴 ∪ 𝐵) ∈ 𝐹)) | 
| 22 | 13, 21 | jaod 860 | . 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹)) | 
| 23 |  | ufilb 23914 | . . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) | 
| 24 | 23 | 3adant3 1133 | . . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) | 
| 25 | 24 | adantr 480 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) | 
| 26 | 2 | 3ad2ant1 1134 | . . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | 
| 27 |  | difun2 4481 | . . . . . . . . . . 11
⊢ ((𝐵 ∪ 𝐴) ∖ 𝐴) = (𝐵 ∖ 𝐴) | 
| 28 |  | uncom 4158 | . . . . . . . . . . . 12
⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | 
| 29 | 28 | difeq1i 4122 | . . . . . . . . . . 11
⊢ ((𝐵 ∪ 𝐴) ∖ 𝐴) = ((𝐴 ∪ 𝐵) ∖ 𝐴) | 
| 30 | 27, 29 | eqtr3i 2767 | . . . . . . . . . 10
⊢ (𝐵 ∖ 𝐴) = ((𝐴 ∪ 𝐵) ∖ 𝐴) | 
| 31 | 30 | ineq2i 4217 | . . . . . . . . 9
⊢ (𝑋 ∩ (𝐵 ∖ 𝐴)) = (𝑋 ∩ ((𝐴 ∪ 𝐵) ∖ 𝐴)) | 
| 32 |  | indifcom 4283 | . . . . . . . . 9
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) = (𝑋 ∩ (𝐵 ∖ 𝐴)) | 
| 33 |  | indifcom 4283 | . . . . . . . . 9
⊢ ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) = (𝑋 ∩ ((𝐴 ∪ 𝐵) ∖ 𝐴)) | 
| 34 | 31, 32, 33 | 3eqtr4i 2775 | . . . . . . . 8
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) | 
| 35 |  | filin 23862 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) | 
| 36 | 2, 35 | syl3an1 1164 | . . . . . . . 8
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) | 
| 37 | 34, 36 | eqeltrid 2845 | . . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) | 
| 38 |  | simp13 1206 | . . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐵 ⊆ 𝑋) | 
| 39 |  | inss1 4237 | . . . . . . . 8
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵 | 
| 40 | 39 | a1i 11 | . . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵) | 
| 41 |  | filss 23861 | . . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝐵 ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵)) → 𝐵 ∈ 𝐹) | 
| 42 | 26, 37, 38, 40, 41 | syl13anc 1374 | . . . . . 6
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐵 ∈ 𝐹) | 
| 43 | 42 | 3expia 1122 | . . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → ((𝑋 ∖ 𝐴) ∈ 𝐹 → 𝐵 ∈ 𝐹)) | 
| 44 | 25, 43 | sylbid 240 | . . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (¬ 𝐴 ∈ 𝐹 → 𝐵 ∈ 𝐹)) | 
| 45 | 44 | orrd 864 | . . 3
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹)) | 
| 46 | 45 | ex 412 | . 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∪ 𝐵) ∈ 𝐹 → (𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹))) | 
| 47 | 22, 46 | impbid 212 | 1
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) ↔ (𝐴 ∪ 𝐵) ∈ 𝐹)) |