Step | Hyp | Ref
| Expression |
1 | | mblss 24695 |
. . . 4
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
2 | | mblss 24695 |
. . . 4
⊢ (𝐵 ∈ dom vol → 𝐵 ⊆
ℝ) |
3 | 1, 2 | anim12i 613 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ⊆ ℝ ∧ 𝐵 ⊆
ℝ)) |
4 | | unss 4118 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ) ↔ (𝐴 ∪ 𝐵) ⊆ ℝ) |
5 | 3, 4 | sylib 217 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ⊆ ℝ) |
6 | | elpwi 4542 |
. . . 4
⊢ (𝑥 ∈ 𝒫 ℝ →
𝑥 ⊆
ℝ) |
7 | | inss1 4162 |
. . . . . . . . 9
⊢ (𝑥 ∩ (𝐴 ∪ 𝐵)) ⊆ 𝑥 |
8 | | ovolsscl 24650 |
. . . . . . . . 9
⊢ (((𝑥 ∩ (𝐴 ∪ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) ∈ ℝ) |
9 | 7, 8 | mp3an1 1447 |
. . . . . . . 8
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) ∈ ℝ) |
10 | 9 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) ∈ ℝ) |
11 | | inss1 4162 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
12 | | ovolsscl 24650 |
. . . . . . . . . 10
⊢ (((𝑥 ∩ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∩ 𝐴)) ∈
ℝ) |
13 | 11, 12 | mp3an1 1447 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
14 | 13 | adantl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
15 | | inss1 4162 |
. . . . . . . . 9
⊢ ((𝑥 ∖ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∖ 𝐴) |
16 | | difss 4066 |
. . . . . . . . . 10
⊢ (𝑥 ∖ 𝐴) ⊆ 𝑥 |
17 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → 𝑥 ⊆
ℝ) |
18 | 16, 17 | sstrid 3932 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (𝑥 ∖
𝐴) ⊆
ℝ) |
19 | | ovolsscl 24650 |
. . . . . . . . . . 11
⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∖
𝐴)) ∈
ℝ) |
20 | 16, 19 | mp3an1 1447 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
22 | | ovolsscl 24650 |
. . . . . . . . 9
⊢ ((((𝑥 ∖ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∖ 𝐴) ∧ (𝑥 ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) →
(vol*‘((𝑥 ∖
𝐴) ∩ 𝐵)) ∈ ℝ) |
23 | 15, 18, 21, 22 | mp3an2i 1465 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) ∈ ℝ) |
24 | 14, 23 | readdcld 11004 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵))) ∈ ℝ) |
25 | | difss 4066 |
. . . . . . . . 9
⊢ (𝑥 ∖ (𝐴 ∪ 𝐵)) ⊆ 𝑥 |
26 | | ovolsscl 24650 |
. . . . . . . . 9
⊢ (((𝑥 ∖ (𝐴 ∪ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∖
(𝐴 ∪ 𝐵))) ∈ ℝ) |
27 | 25, 26 | mp3an1 1447 |
. . . . . . . 8
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))) ∈ ℝ) |
28 | 27 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))) ∈ ℝ) |
29 | | incom 4135 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∖ 𝐴) ∩ 𝐵) = (𝐵 ∩ (𝑥 ∖ 𝐴)) |
30 | | indifcom 4206 |
. . . . . . . . . . . 12
⊢ (𝐵 ∩ (𝑥 ∖ 𝐴)) = (𝑥 ∩ (𝐵 ∖ 𝐴)) |
31 | 29, 30 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ((𝑥 ∖ 𝐴) ∩ 𝐵) = (𝑥 ∩ (𝐵 ∖ 𝐴)) |
32 | 31 | uneq2i 4094 |
. . . . . . . . . 10
⊢ ((𝑥 ∩ 𝐴) ∪ ((𝑥 ∖ 𝐴) ∩ 𝐵)) = ((𝑥 ∩ 𝐴) ∪ (𝑥 ∩ (𝐵 ∖ 𝐴))) |
33 | | indi 4207 |
. . . . . . . . . 10
⊢ (𝑥 ∩ (𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝑥 ∩ 𝐴) ∪ (𝑥 ∩ (𝐵 ∖ 𝐴))) |
34 | | undif2 4410 |
. . . . . . . . . . 11
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
35 | 34 | ineq2i 4143 |
. . . . . . . . . 10
⊢ (𝑥 ∩ (𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝑥 ∩ (𝐴 ∪ 𝐵)) |
36 | 32, 33, 35 | 3eqtr2ri 2773 |
. . . . . . . . 9
⊢ (𝑥 ∩ (𝐴 ∪ 𝐵)) = ((𝑥 ∩ 𝐴) ∪ ((𝑥 ∖ 𝐴) ∩ 𝐵)) |
37 | 36 | fveq2i 6777 |
. . . . . . . 8
⊢
(vol*‘(𝑥 ∩
(𝐴 ∪ 𝐵))) = (vol*‘((𝑥 ∩ 𝐴) ∪ ((𝑥 ∖ 𝐴) ∩ 𝐵))) |
38 | 11, 17 | sstrid 3932 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (𝑥 ∩
𝐴) ⊆
ℝ) |
39 | 15, 18 | sstrid 3932 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((𝑥
∖ 𝐴) ∩ 𝐵) ⊆
ℝ) |
40 | | ovolun 24663 |
. . . . . . . . 9
⊢ ((((𝑥 ∩ 𝐴) ⊆ ℝ ∧ (vol*‘(𝑥 ∩ 𝐴)) ∈ ℝ) ∧ (((𝑥 ∖ 𝐴) ∩ 𝐵) ⊆ ℝ ∧ (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) ∈ ℝ)) →
(vol*‘((𝑥 ∩ 𝐴) ∪ ((𝑥 ∖ 𝐴) ∩ 𝐵))) ≤ ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)))) |
41 | 38, 14, 39, 23, 40 | syl22anc 836 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘((𝑥 ∩ 𝐴) ∪ ((𝑥 ∖ 𝐴) ∩ 𝐵))) ≤ ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)))) |
42 | 37, 41 | eqbrtrid 5109 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) ≤ ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)))) |
43 | 10, 24, 28, 42 | leadd1dd 11589 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))))) |
44 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → 𝐵 ∈
dom vol) |
45 | | mblsplit 24696 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ dom vol ∧ (𝑥 ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) → (vol*‘(𝑥 ∖ 𝐴)) = ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘((𝑥 ∖ 𝐴) ∖ 𝐵)))) |
46 | 44, 18, 21, 45 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) = ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘((𝑥 ∖ 𝐴) ∖ 𝐵)))) |
47 | | difun1 4223 |
. . . . . . . . . . 11
⊢ (𝑥 ∖ (𝐴 ∪ 𝐵)) = ((𝑥 ∖ 𝐴) ∖ 𝐵) |
48 | 47 | fveq2i 6777 |
. . . . . . . . . 10
⊢
(vol*‘(𝑥
∖ (𝐴 ∪ 𝐵))) = (vol*‘((𝑥 ∖ 𝐴) ∖ 𝐵)) |
49 | 48 | oveq2i 7286 |
. . . . . . . . 9
⊢
((vol*‘((𝑥
∖ 𝐴) ∩ 𝐵)) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) = ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘((𝑥 ∖ 𝐴) ∖ 𝐵))) |
50 | 46, 49 | eqtr4di 2796 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ 𝐴)) = ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))))) |
51 | 50 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = ((vol*‘(𝑥 ∩ 𝐴)) + ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))))) |
52 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → 𝐴 ∈
dom vol) |
53 | | simprr 770 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘𝑥) ∈ ℝ) |
54 | | mblsplit 24696 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
55 | 52, 17, 53, 54 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
56 | 14 | recnd 11003 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℂ) |
57 | 23 | recnd 11003 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) ∈ ℂ) |
58 | 28 | recnd 11003 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))) ∈ ℂ) |
59 | 56, 57, 58 | addassd 10997 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) = ((vol*‘(𝑥 ∩ 𝐴)) + ((vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵)) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))))) |
60 | 51, 55, 59 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘𝑥) = (((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘((𝑥 ∖ 𝐴) ∩ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵))))) |
61 | 43, 60 | breqtrrd 5102 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (vol*‘𝑥)) |
62 | 61 | expr 457 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ 𝑥 ⊆ ℝ) →
((vol*‘𝑥) ∈
ℝ → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (vol*‘𝑥))) |
63 | 6, 62 | sylan2 593 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ 𝑥 ∈ 𝒫 ℝ)
→ ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (vol*‘𝑥))) |
64 | 63 | ralrimiva 3103 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) →
∀𝑥 ∈ 𝒫
ℝ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (vol*‘𝑥))) |
65 | | ismbl2 24691 |
. 2
⊢ ((𝐴 ∪ 𝐵) ∈ dom vol ↔ ((𝐴 ∪ 𝐵) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫
ℝ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴 ∪ 𝐵))) + (vol*‘(𝑥 ∖ (𝐴 ∪ 𝐵)))) ≤ (vol*‘𝑥)))) |
66 | 5, 64, 65 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ∈ dom vol) |