| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indi | Structured version Visualization version GIF version | ||
| Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| indi | ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 1009 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) | |
| 2 | elin 3933 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 3 | elin 3933 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
| 4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) |
| 6 | elun 4119 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 8 | elun 4119 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) | |
| 9 | 5, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶))) |
| 10 | 9 | ineqri 4178 | 1 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-in 3924 |
| This theorem is referenced by: indir 4252 difindi 4258 undisj2 4429 disjssun 4434 difdifdir 4458 disjpr2 4680 resundi 5967 fresaun 6734 elfiun 9388 unxpwdom 9549 kmlem2 10112 djuinf 10149 ackbij1lem1 10179 ackbij1lem2 10180 ssxr 11250 incexclem 15809 bitsinv1 16419 bitsinvp1 16426 bitsres 16450 paste 23188 unmbl 25445 ovolioo 25476 uniioombllem4 25494 volcn 25514 ellimc2 25785 lhop2 25927 ex-in 30361 eulerpartgbij 34370 poimirlem3 37624 poimirlem15 37636 asindmre 37704 iunrelexp0 43698 sge0resplit 46411 sge0split 46414 tposresg 48870 tposrescnv 48871 iscnrm3rlem1 48932 topdlat 48996 |
| Copyright terms: Public domain | W3C validator |