Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indi | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi | ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1005 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3903 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3903 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | orbi12i 912 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
5 | 1, 4 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) |
6 | elun 4083 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
7 | 6 | anbi2i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
8 | elun 4083 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) | |
9 | 5, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶))) |
10 | 9 | ineqri 4138 | 1 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 |
This theorem is referenced by: indir 4209 difindi 4215 undisj2 4396 disjssun 4401 difdifdir 4422 disjpr2 4649 resundi 5905 fresaun 6645 elfiun 9189 unxpwdom 9348 kmlem2 9907 djuinf 9944 ackbij1lem1 9976 ackbij1lem2 9977 ssxr 11044 incexclem 15548 bitsinv1 16149 bitsinvp1 16156 bitsres 16180 paste 22445 unmbl 24701 ovolioo 24732 uniioombllem4 24750 volcn 24770 ellimc2 25041 lhop2 25179 ex-in 28789 eulerpartgbij 32339 poimirlem3 35780 poimirlem15 35792 asindmre 35860 iunrelexp0 41310 sge0resplit 43944 sge0split 43947 iscnrm3rlem1 46234 topdlat 46290 |
Copyright terms: Public domain | W3C validator |