MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indi Structured version   Visualization version   GIF version

Theorem indi 4290
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
indi (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem indi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 andi 1009 . . . 4 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴𝑥𝐶)))
2 elin 3979 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3 elin 3979 . . . . 5 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
42, 3orbi12i 914 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∨ (𝑥𝐴𝑥𝐶)))
51, 4bitr4i 278 . . 3 ((𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)))
6 elun 4163 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76anbi2i 623 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑥𝐵𝑥𝐶)))
8 elun 4163 . . 3 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐴𝐶)))
95, 7, 83bitr4i 303 . 2 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐶)))
109ineqri 4220 1 (𝐴 ∩ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1537  wcel 2106  cun 3961  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-in 3970
This theorem is referenced by:  indir  4292  difindi  4298  undisj2  4469  disjssun  4474  difdifdir  4498  disjpr2  4718  resundi  6014  fresaun  6780  elfiun  9468  unxpwdom  9627  kmlem2  10190  djuinf  10227  ackbij1lem1  10257  ackbij1lem2  10258  ssxr  11328  incexclem  15869  bitsinv1  16476  bitsinvp1  16483  bitsres  16507  paste  23318  unmbl  25586  ovolioo  25617  uniioombllem4  25635  volcn  25655  ellimc2  25927  lhop2  26069  ex-in  30454  eulerpartgbij  34354  poimirlem3  37610  poimirlem15  37622  asindmre  37690  iunrelexp0  43692  sge0resplit  46362  sge0split  46365  iscnrm3rlem1  48737  topdlat  48793
  Copyright terms: Public domain W3C validator