![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indi | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi | ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1007 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3963 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3963 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
5 | 1, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) |
6 | elun 4147 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
7 | 6 | anbi2i 624 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
8 | elun 4147 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) | |
9 | 5, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶))) |
10 | 9 | ineqri 4203 | 1 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∪ cun 3945 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3952 df-in 3954 |
This theorem is referenced by: indir 4274 difindi 4280 undisj2 4461 disjssun 4466 difdifdir 4490 disjpr2 4716 resundi 5993 fresaun 6759 elfiun 9421 unxpwdom 9580 kmlem2 10142 djuinf 10179 ackbij1lem1 10211 ackbij1lem2 10212 ssxr 11279 incexclem 15778 bitsinv1 16379 bitsinvp1 16386 bitsres 16410 paste 22780 unmbl 25036 ovolioo 25067 uniioombllem4 25085 volcn 25105 ellimc2 25376 lhop2 25514 ex-in 29658 eulerpartgbij 33309 poimirlem3 36429 poimirlem15 36441 asindmre 36509 iunrelexp0 42386 sge0resplit 45057 sge0split 45060 iscnrm3rlem1 47475 topdlat 47531 |
Copyright terms: Public domain | W3C validator |