![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indi | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi | ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1008 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3992 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3992 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | orbi12i 913 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
5 | 1, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) |
6 | elun 4176 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
7 | 6 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
8 | elun 4176 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) | |
9 | 5, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶))) |
10 | 9 | ineqri 4233 | 1 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-in 3983 |
This theorem is referenced by: indir 4305 difindi 4311 undisj2 4486 disjssun 4491 difdifdir 4515 disjpr2 4738 resundi 6023 fresaun 6792 elfiun 9499 unxpwdom 9658 kmlem2 10221 djuinf 10258 ackbij1lem1 10288 ackbij1lem2 10289 ssxr 11359 incexclem 15884 bitsinv1 16488 bitsinvp1 16495 bitsres 16519 paste 23323 unmbl 25591 ovolioo 25622 uniioombllem4 25640 volcn 25660 ellimc2 25932 lhop2 26074 ex-in 30457 eulerpartgbij 34337 poimirlem3 37583 poimirlem15 37595 asindmre 37663 iunrelexp0 43664 sge0resplit 46327 sge0split 46330 iscnrm3rlem1 48620 topdlat 48676 |
Copyright terms: Public domain | W3C validator |