![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indi | Structured version Visualization version GIF version |
Description: Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
indi | ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andi 1007 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) | |
2 | elin 3965 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
3 | elin 3965 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
5 | 1, 4 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) |
6 | elun 4149 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
7 | 6 | anbi2i 624 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
8 | elun 4149 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∩ 𝐵) ∨ 𝑥 ∈ (𝐴 ∩ 𝐶))) | |
9 | 5, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶))) |
10 | 9 | ineqri 4205 | 1 ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 |
This theorem is referenced by: indir 4276 difindi 4282 undisj2 4463 disjssun 4468 difdifdir 4492 disjpr2 4718 resundi 5996 fresaun 6763 elfiun 9425 unxpwdom 9584 kmlem2 10146 djuinf 10183 ackbij1lem1 10215 ackbij1lem2 10216 ssxr 11283 incexclem 15782 bitsinv1 16383 bitsinvp1 16390 bitsres 16414 paste 22798 unmbl 25054 ovolioo 25085 uniioombllem4 25103 volcn 25123 ellimc2 25394 lhop2 25532 ex-in 29678 eulerpartgbij 33371 poimirlem3 36491 poimirlem15 36503 asindmre 36571 iunrelexp0 42453 sge0resplit 45122 sge0split 45125 iscnrm3rlem1 47573 topdlat 47629 |
Copyright terms: Public domain | W3C validator |