MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmmbl Structured version   Visualization version   GIF version

Theorem cmmbl 25492
Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
cmmbl (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)

Proof of Theorem cmmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difssd 4117 . 2 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ⊆ ℝ)
2 elpwi 4587 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inss1 4217 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
4 ovolsscl 25444 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
53, 4mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
653adant1 1130 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
76recnd 11268 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
8 difss 4116 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
9 ovolsscl 25444 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
108, 9mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
11103adant1 1130 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1211recnd 11268 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
137, 12addcomd 11442 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 mblsplit 25490 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
15 indifcom 4263 . . . . . . . . 9 (ℝ ∩ (𝑥𝐴)) = (𝑥 ∩ (ℝ ∖ 𝐴))
16 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1716ssdifssd 4127 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ ℝ)
18 sseqin2 4203 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ ↔ (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
1917, 18sylib 218 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
2015, 19eqtr3id 2785 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2120fveq2d 6885 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
22 difin 4252 . . . . . . . . . 10 (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (ℝ ∖ 𝐴))
2320difeq2d 4106 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (𝑥𝐴)))
2422, 23eqtr3id 2785 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥 ∖ (𝑥𝐴)))
25 dfin4 4258 . . . . . . . . 9 (𝑥𝐴) = (𝑥 ∖ (𝑥𝐴))
2624, 25eqtr4di 2789 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2726fveq2d 6885 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
2821, 27oveq12d 7428 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
2913, 14, 283eqtr4d 2781 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))
30293expia 1121 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
312, 30sylan2 593 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
3231ralrimiva 3133 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
33 ismbl 25484 . 2 ((ℝ ∖ 𝐴) ∈ dom vol ↔ ((ℝ ∖ 𝐴) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))))
341, 32, 33sylanbrc 583 1 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cdif 3928  cin 3930  wss 3931  𝒫 cpw 4580  dom cdm 5659  cfv 6536  (class class class)co 7410  cr 11133   + caddc 11137  vol*covol 25420  volcvol 25421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-icc 13374  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-ovol 25422  df-vol 25423
This theorem is referenced by:  rembl  25498  inmbl  25500  difmbl  25501  iccmbl  25524  itg2uba  25701  itg2monolem1  25708  itg2cnlem1  25719  itg2cnlem2  25720  dmvlsiga  34165  ftc1anclem5  37726  dmvolsal  46355
  Copyright terms: Public domain W3C validator