| Step | Hyp | Ref
| Expression |
| 1 | | difssd 4136 |
. 2
⊢ (𝐴 ∈ dom vol → (ℝ
∖ 𝐴) ⊆
ℝ) |
| 2 | | elpwi 4606 |
. . . 4
⊢ (𝑥 ∈ 𝒫 ℝ →
𝑥 ⊆
ℝ) |
| 3 | | inss1 4236 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝑥 |
| 4 | | ovolsscl 25522 |
. . . . . . . . . 10
⊢ (((𝑥 ∩ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∩ 𝐴)) ∈
ℝ) |
| 5 | 3, 4 | mp3an1 1449 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
| 6 | 5 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
| 7 | 6 | recnd 11290 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ 𝐴)) ∈ ℂ) |
| 8 | | difss 4135 |
. . . . . . . . . 10
⊢ (𝑥 ∖ 𝐴) ⊆ 𝑥 |
| 9 | | ovolsscl 25522 |
. . . . . . . . . 10
⊢ (((𝑥 ∖ 𝐴) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∖
𝐴)) ∈
ℝ) |
| 10 | 8, 9 | mp3an1 1449 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
| 11 | 10 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℝ) |
| 12 | 11 | recnd 11290 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ 𝐴)) ∈ ℂ) |
| 13 | 7, 12 | addcomd 11464 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) = ((vol*‘(𝑥 ∖ 𝐴)) + (vol*‘(𝑥 ∩ 𝐴)))) |
| 14 | | mblsplit 25568 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))) |
| 15 | | indifcom 4282 |
. . . . . . . . 9
⊢ (ℝ
∩ (𝑥 ∖ 𝐴)) = (𝑥 ∩ (ℝ ∖ 𝐴)) |
| 16 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → 𝑥 ⊆
ℝ) |
| 17 | 16 | ssdifssd 4146 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (𝑥 ∖
𝐴) ⊆
ℝ) |
| 18 | | sseqin2 4222 |
. . . . . . . . . 10
⊢ ((𝑥 ∖ 𝐴) ⊆ ℝ ↔ (ℝ ∩
(𝑥 ∖ 𝐴)) = (𝑥 ∖ 𝐴)) |
| 19 | 17, 18 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (ℝ ∩ (𝑥 ∖ 𝐴)) = (𝑥 ∖ 𝐴)) |
| 20 | 15, 19 | eqtr3id 2790 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (𝑥 ∩
(ℝ ∖ 𝐴)) =
(𝑥 ∖ 𝐴)) |
| 21 | 20 | fveq2d 6909 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) = (vol*‘(𝑥 ∖ 𝐴))) |
| 22 | | difin 4271 |
. . . . . . . . . 10
⊢ (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (ℝ ∖ 𝐴)) |
| 23 | 20 | difeq2d 4125 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (𝑥 ∖
(𝑥 ∩ (ℝ ∖
𝐴))) = (𝑥 ∖ (𝑥 ∖ 𝐴))) |
| 24 | 22, 23 | eqtr3id 2790 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (𝑥 ∖
(ℝ ∖ 𝐴)) =
(𝑥 ∖ (𝑥 ∖ 𝐴))) |
| 25 | | dfin4 4277 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝐴) = (𝑥 ∖ (𝑥 ∖ 𝐴)) |
| 26 | 24, 25 | eqtr4di 2794 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (𝑥 ∖
(ℝ ∖ 𝐴)) =
(𝑥 ∩ 𝐴)) |
| 27 | 26 | fveq2d 6909 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))) = (vol*‘(𝑥 ∩ 𝐴))) |
| 28 | 21, 27 | oveq12d 7450 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))) = ((vol*‘(𝑥 ∖ 𝐴)) + (vol*‘(𝑥 ∩ 𝐴)))) |
| 29 | 13, 14, 28 | 3eqtr4d 2786 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))) |
| 30 | 29 | 3expia 1121 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ) →
((vol*‘𝑥) ∈
ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))) |
| 31 | 2, 30 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝒫 ℝ)
→ ((vol*‘𝑥)
∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))) |
| 32 | 31 | ralrimiva 3145 |
. 2
⊢ (𝐴 ∈ dom vol →
∀𝑥 ∈ 𝒫
ℝ((vol*‘𝑥)
∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))) |
| 33 | | ismbl 25562 |
. 2
⊢ ((ℝ
∖ 𝐴) ∈ dom vol
↔ ((ℝ ∖ 𝐴)
⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ →
(vol*‘𝑥) =
((vol*‘(𝑥 ∩
(ℝ ∖ 𝐴))) +
(vol*‘(𝑥 ∖
(ℝ ∖ 𝐴))))))) |
| 34 | 1, 32, 33 | sylanbrc 583 |
1
⊢ (𝐴 ∈ dom vol → (ℝ
∖ 𝐴) ∈ dom
vol) |