MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmmbl Structured version   Visualization version   GIF version

Theorem cmmbl 25472
Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
cmmbl (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)

Proof of Theorem cmmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difssd 4088 . 2 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ⊆ ℝ)
2 elpwi 4558 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inss1 4188 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
4 ovolsscl 25424 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
53, 4mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
653adant1 1130 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
76recnd 11150 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
8 difss 4087 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
9 ovolsscl 25424 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
108, 9mp3an1 1450 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
11103adant1 1130 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1211recnd 11150 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
137, 12addcomd 11325 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 mblsplit 25470 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
15 indifcom 4234 . . . . . . . . 9 (ℝ ∩ (𝑥𝐴)) = (𝑥 ∩ (ℝ ∖ 𝐴))
16 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1716ssdifssd 4098 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ ℝ)
18 sseqin2 4174 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ ↔ (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
1917, 18sylib 218 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
2015, 19eqtr3id 2782 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2120fveq2d 6835 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
22 difin 4223 . . . . . . . . . 10 (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (ℝ ∖ 𝐴))
2320difeq2d 4077 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (𝑥𝐴)))
2422, 23eqtr3id 2782 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥 ∖ (𝑥𝐴)))
25 dfin4 4229 . . . . . . . . 9 (𝑥𝐴) = (𝑥 ∖ (𝑥𝐴))
2624, 25eqtr4di 2786 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2726fveq2d 6835 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
2821, 27oveq12d 7373 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
2913, 14, 283eqtr4d 2778 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))
30293expia 1121 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
312, 30sylan2 593 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
3231ralrimiva 3126 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
33 ismbl 25464 . 2 ((ℝ ∖ 𝐴) ∈ dom vol ↔ ((ℝ ∖ 𝐴) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))))
341, 32, 33sylanbrc 583 1 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wral 3049  cdif 3896  cin 3898  wss 3899  𝒫 cpw 4551  dom cdm 5621  cfv 6489  (class class class)co 7355  cr 11015   + caddc 11019  vol*covol 25400  volcvol 25401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-ico 13261  df-icc 13262  df-fz 13418  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-ovol 25402  df-vol 25403
This theorem is referenced by:  rembl  25478  inmbl  25480  difmbl  25481  iccmbl  25504  itg2uba  25681  itg2monolem1  25688  itg2cnlem1  25699  itg2cnlem2  25700  dmvlsiga  34153  ftc1anclem5  37747  dmvolsal  46458
  Copyright terms: Public domain W3C validator