MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmmbl Structured version   Visualization version   GIF version

Theorem cmmbl 24135
Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
cmmbl (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)

Proof of Theorem cmmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difssd 4109 . 2 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ⊆ ℝ)
2 elpwi 4548 . . . 4 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inss1 4205 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
4 ovolsscl 24087 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
53, 4mp3an1 1444 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
653adant1 1126 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
76recnd 10669 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
8 difss 4108 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝑥
9 ovolsscl 24087 . . . . . . . . . 10 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
108, 9mp3an1 1444 . . . . . . . . 9 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
11103adant1 1126 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1211recnd 10669 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℂ)
137, 12addcomd 10842 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 mblsplit 24133 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
15 indifcom 4249 . . . . . . . . 9 (ℝ ∩ (𝑥𝐴)) = (𝑥 ∩ (ℝ ∖ 𝐴))
16 simp2 1133 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
1716ssdifssd 4119 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ ℝ)
18 sseqin2 4192 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ ↔ (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
1917, 18sylib 220 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (ℝ ∩ (𝑥𝐴)) = (𝑥𝐴))
2015, 19syl5eqr 2870 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∩ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2120fveq2d 6674 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
22 difin 4238 . . . . . . . . . 10 (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (ℝ ∖ 𝐴))
2320difeq2d 4099 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (𝑥 ∩ (ℝ ∖ 𝐴))) = (𝑥 ∖ (𝑥𝐴)))
2422, 23syl5eqr 2870 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥 ∖ (𝑥𝐴)))
25 dfin4 4244 . . . . . . . . 9 (𝑥𝐴) = (𝑥 ∖ (𝑥𝐴))
2624, 25syl6eqr 2874 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥 ∖ (ℝ ∖ 𝐴)) = (𝑥𝐴))
2726fveq2d 6674 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))) = (vol*‘(𝑥𝐴)))
2821, 27oveq12d 7174 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
2913, 14, 283eqtr4d 2866 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))
30293expia 1117 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
312, 30sylan2 594 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
3231ralrimiva 3182 . 2 (𝐴 ∈ dom vol → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴))))))
33 ismbl 24127 . 2 ((ℝ ∖ 𝐴) ∈ dom vol ↔ ((ℝ ∖ 𝐴) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ (ℝ ∖ 𝐴))) + (vol*‘(𝑥 ∖ (ℝ ∖ 𝐴)))))))
341, 32, 33sylanbrc 585 1 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cdif 3933  cin 3935  wss 3936  𝒫 cpw 4539  dom cdm 5555  cfv 6355  (class class class)co 7156  cr 10536   + caddc 10540  vol*covol 24063  volcvol 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-ovol 24065  df-vol 24066
This theorem is referenced by:  rembl  24141  inmbl  24143  difmbl  24144  iccmbl  24167  itg2uba  24344  itg2monolem1  24351  itg2cnlem1  24362  itg2cnlem2  24363  dmvlsiga  31388  ftc1anclem5  34986  dmvolsal  42649
  Copyright terms: Public domain W3C validator