Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof0 Structured version   Visualization version   GIF version

Theorem mof0 46053
Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mof0 ∃*𝑓 𝑓:𝐴⟶∅

Proof of Theorem mof0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0ex 5226 . . . 4 ∅ ∈ V
2 eqeq2 2750 . . . . . 6 (𝑔 = ∅ → (𝑓 = 𝑔𝑓 = ∅))
32imbi2d 340 . . . . 5 (𝑔 = ∅ → ((𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶∅ → 𝑓 = ∅)))
43albidv 1924 . . . 4 (𝑔 = ∅ → (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅)))
51, 4spcev 3535 . . 3 (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅) → ∃𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔))
6 f00 6640 . . . 4 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
76simplbi 497 . . 3 (𝑓:𝐴⟶∅ → 𝑓 = ∅)
85, 7mpg 1801 . 2 𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)
9 df-mo 2540 . 2 (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∃𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔))
108, 9mpbir 230 1 ∃*𝑓 𝑓:𝐴⟶∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wex 1783  ∃*wmo 2538  c0 4253  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  mof02  46054
  Copyright terms: Public domain W3C validator