Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mof0 | Structured version Visualization version GIF version |
Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mof0 | ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
2 | eqeq2 2750 | . . . . . 6 ⊢ (𝑔 = ∅ → (𝑓 = 𝑔 ↔ 𝑓 = ∅)) | |
3 | 2 | imbi2d 340 | . . . . 5 ⊢ (𝑔 = ∅ → ((𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶∅ → 𝑓 = ∅))) |
4 | 3 | albidv 1924 | . . . 4 ⊢ (𝑔 = ∅ → (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅))) |
5 | 1, 4 | spcev 3535 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅) → ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)) |
6 | f00 6640 | . . . 4 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
7 | 6 | simplbi 497 | . . 3 ⊢ (𝑓:𝐴⟶∅ → 𝑓 = ∅) |
8 | 5, 7 | mpg 1801 | . 2 ⊢ ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) |
9 | df-mo 2540 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∃wex 1783 ∃*wmo 2538 ∅c0 4253 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: mof02 46054 |
Copyright terms: Public domain | W3C validator |