| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mof0 | Structured version Visualization version GIF version | ||
| Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| mof0 | ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | eqeq2 2747 | . . . . . 6 ⊢ (𝑔 = ∅ → (𝑓 = 𝑔 ↔ 𝑓 = ∅)) | |
| 3 | 2 | imbi2d 340 | . . . . 5 ⊢ (𝑔 = ∅ → ((𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶∅ → 𝑓 = ∅))) |
| 4 | 3 | albidv 1920 | . . . 4 ⊢ (𝑔 = ∅ → (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅))) |
| 5 | 1, 4 | spcev 3585 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅) → ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)) |
| 6 | f00 6759 | . . . 4 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 7 | 6 | simplbi 497 | . . 3 ⊢ (𝑓:𝐴⟶∅ → 𝑓 = ∅) |
| 8 | 5, 7 | mpg 1797 | . 2 ⊢ ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) |
| 9 | df-mo 2539 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∃𝑔∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∃wex 1779 ∃*wmo 2537 ∅c0 4308 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: mof02 48765 |
| Copyright terms: Public domain | W3C validator |