Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof0 Structured version   Visualization version   GIF version

Theorem mof0 48764
Description: There is at most one function into the empty set. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mof0 ∃*𝑓 𝑓:𝐴⟶∅

Proof of Theorem mof0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 0ex 5277 . . . 4 ∅ ∈ V
2 eqeq2 2747 . . . . . 6 (𝑔 = ∅ → (𝑓 = 𝑔𝑓 = ∅))
32imbi2d 340 . . . . 5 (𝑔 = ∅ → ((𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ (𝑓:𝐴⟶∅ → 𝑓 = ∅)))
43albidv 1920 . . . 4 (𝑔 = ∅ → (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔) ↔ ∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅)))
51, 4spcev 3585 . . 3 (∀𝑓(𝑓:𝐴⟶∅ → 𝑓 = ∅) → ∃𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔))
6 f00 6759 . . . 4 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
76simplbi 497 . . 3 (𝑓:𝐴⟶∅ → 𝑓 = ∅)
85, 7mpg 1797 . 2 𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔)
9 df-mo 2539 . 2 (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∃𝑔𝑓(𝑓:𝐴⟶∅ → 𝑓 = 𝑔))
108, 9mpbir 231 1 ∃*𝑓 𝑓:𝐴⟶∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wex 1779  ∃*wmo 2537  c0 4308  wf 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-fun 6532  df-fn 6533  df-f 6534
This theorem is referenced by:  mof02  48765
  Copyright terms: Public domain W3C validator