![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatglb | Structured version Visualization version GIF version |
Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
topclat.i | β’ πΌ = (toIncβπ½) |
toplatlub.j | β’ (π β π½ β Top) |
toplatlub.s | β’ (π β π β π½) |
toplatglb.g | β’ πΊ = (glbβπΌ) |
toplatglb.e | β’ (π β π β β ) |
Ref | Expression |
---|---|
toplatglb | β’ (π β (πΊβπ) = ((intβπ½)ββ© π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topclat.i | . 2 β’ πΌ = (toIncβπ½) | |
2 | toplatlub.j | . 2 β’ (π β π½ β Top) | |
3 | toplatlub.s | . 2 β’ (π β π β π½) | |
4 | toplatglb.g | . . 3 β’ πΊ = (glbβπΌ) | |
5 | 4 | a1i 11 | . 2 β’ (π β πΊ = (glbβπΌ)) |
6 | toplatglb.e | . . . . . 6 β’ (π β π β β ) | |
7 | intssuni 4975 | . . . . . 6 β’ (π β β β β© π β βͺ π) | |
8 | 6, 7 | syl 17 | . . . . 5 β’ (π β β© π β βͺ π) |
9 | 3 | unissd 4919 | . . . . 5 β’ (π β βͺ π β βͺ π½) |
10 | 8, 9 | sstrd 3993 | . . . 4 β’ (π β β© π β βͺ π½) |
11 | eqid 2731 | . . . . 5 β’ βͺ π½ = βͺ π½ | |
12 | 11 | ntrval 22761 | . . . 4 β’ ((π½ β Top β§ β© π β βͺ π½) β ((intβπ½)ββ© π) = βͺ (π½ β© π« β© π)) |
13 | 2, 10, 12 | syl2anc 583 | . . 3 β’ (π β ((intβπ½)ββ© π) = βͺ (π½ β© π« β© π)) |
14 | 2 | uniexd 7735 | . . . . 5 β’ (π β βͺ π½ β V) |
15 | 14, 10 | ssexd 5325 | . . . 4 β’ (π β β© π β V) |
16 | inpw 47592 | . . . . 5 β’ (β© π β V β (π½ β© π« β© π) = {π₯ β π½ β£ π₯ β β© π}) | |
17 | 16 | unieqd 4923 | . . . 4 β’ (β© π β V β βͺ (π½ β© π« β© π) = βͺ {π₯ β π½ β£ π₯ β β© π}) |
18 | 15, 17 | syl 17 | . . 3 β’ (π β βͺ (π½ β© π« β© π) = βͺ {π₯ β π½ β£ π₯ β β© π}) |
19 | 13, 18 | eqtrd 2771 | . 2 β’ (π β ((intβπ½)ββ© π) = βͺ {π₯ β π½ β£ π₯ β β© π}) |
20 | 11 | ntropn 22774 | . . 3 β’ ((π½ β Top β§ β© π β βͺ π½) β ((intβπ½)ββ© π) β π½) |
21 | 2, 10, 20 | syl2anc 583 | . 2 β’ (π β ((intβπ½)ββ© π) β π½) |
22 | 1, 2, 3, 5, 19, 21 | ipoglb 47705 | 1 β’ (π β (πΊβπ) = ((intβπ½)ββ© π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β wne 2939 {crab 3431 Vcvv 3473 β© cin 3948 β wss 3949 β c0 4323 π« cpw 4603 βͺ cuni 4909 β© cint 4951 βcfv 6544 glbcglb 18268 toInccipo 18485 Topctop 22616 intcnt 22742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-tset 17221 df-ple 17222 df-ocomp 17223 df-odu 18245 df-proset 18253 df-poset 18271 df-lub 18304 df-glb 18305 df-ipo 18486 df-top 22617 df-ntr 22745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |