| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
| toplatlub.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| toplatlub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐽) |
| toplatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| toplatglb.e | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| toplatglb | ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | . 2 ⊢ 𝐼 = (toInc‘𝐽) | |
| 2 | toplatlub.j | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | toplatlub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐽) | |
| 4 | toplatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| 6 | toplatglb.e | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 7 | intssuni 4930 | . . . . . 6 ⊢ (𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆) |
| 9 | 3 | unissd 4877 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽) |
| 10 | 8, 9 | sstrd 3954 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽) |
| 11 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | ntrval 22956 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 13 | 2, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 14 | 2 | uniexd 7698 | . . . . 5 ⊢ (𝜑 → ∪ 𝐽 ∈ V) |
| 15 | 14, 10 | ssexd 5274 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ∈ V) |
| 16 | inpw 48806 | . . . . 5 ⊢ (∩ 𝑆 ∈ V → (𝐽 ∩ 𝒫 ∩ 𝑆) = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 17 | 16 | unieqd 4880 | . . . 4 ⊢ (∩ 𝑆 ∈ V → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 13, 18 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 20 | 11 | ntropn 22969 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 21 | 2, 10, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 22 | 1, 2, 3, 5, 19, 21 | ipoglb 48972 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 ∪ cuni 4867 ∩ cint 4906 ‘cfv 6499 glbcglb 18251 toInccipo 18468 Topctop 22813 intcnt 22937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-odu 18228 df-proset 18235 df-poset 18254 df-lub 18285 df-glb 18286 df-ipo 18469 df-top 22814 df-ntr 22940 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |