| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
| toplatlub.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| toplatlub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐽) |
| toplatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| toplatglb.e | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| toplatglb | ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | . 2 ⊢ 𝐼 = (toInc‘𝐽) | |
| 2 | toplatlub.j | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | toplatlub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐽) | |
| 4 | toplatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| 6 | toplatglb.e | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 7 | intssuni 4918 | . . . . . 6 ⊢ (𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆) |
| 9 | 3 | unissd 4866 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽) |
| 10 | 8, 9 | sstrd 3940 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽) |
| 11 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | ntrval 22951 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 13 | 2, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 14 | 2 | uniexd 7675 | . . . . 5 ⊢ (𝜑 → ∪ 𝐽 ∈ V) |
| 15 | 14, 10 | ssexd 5260 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ∈ V) |
| 16 | inpw 48924 | . . . . 5 ⊢ (∩ 𝑆 ∈ V → (𝐽 ∩ 𝒫 ∩ 𝑆) = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 17 | 16 | unieqd 4869 | . . . 4 ⊢ (∩ 𝑆 ∈ V → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 13, 18 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 20 | 11 | ntropn 22964 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 21 | 2, 10, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 22 | 1, 2, 3, 5, 19, 21 | ipoglb 49090 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 ∩ cint 4895 ‘cfv 6481 glbcglb 18216 toInccipo 18433 Topctop 22808 intcnt 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-odu 18193 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-ipo 18434 df-top 22809 df-ntr 22935 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |