| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatglb | Structured version Visualization version GIF version | ||
| Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
| toplatlub.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| toplatlub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐽) |
| toplatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
| toplatglb.e | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Ref | Expression |
|---|---|
| toplatglb | ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | . 2 ⊢ 𝐼 = (toInc‘𝐽) | |
| 2 | toplatlub.j | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | toplatlub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐽) | |
| 4 | toplatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| 6 | toplatglb.e | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 7 | intssuni 4969 | . . . . . 6 ⊢ (𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆) |
| 9 | 3 | unissd 4916 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽) |
| 10 | 8, 9 | sstrd 3993 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽) |
| 11 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | ntrval 23045 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 13 | 2, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
| 14 | 2 | uniexd 7763 | . . . . 5 ⊢ (𝜑 → ∪ 𝐽 ∈ V) |
| 15 | 14, 10 | ssexd 5323 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ∈ V) |
| 16 | inpw 48743 | . . . . 5 ⊢ (∩ 𝑆 ∈ V → (𝐽 ∩ 𝒫 ∩ 𝑆) = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 17 | 16 | unieqd 4919 | . . . 4 ⊢ (∩ 𝑆 ∈ V → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 19 | 13, 18 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| 20 | 11 | ntropn 23058 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 21 | 2, 10, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
| 22 | 1, 2, 3, 5, 19, 21 | ipoglb 48895 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 Vcvv 3479 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 𝒫 cpw 4599 ∪ cuni 4906 ∩ cint 4945 ‘cfv 6560 glbcglb 18357 toInccipo 18573 Topctop 22900 intcnt 23026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-tset 17317 df-ple 17318 df-ocomp 17319 df-odu 18333 df-proset 18341 df-poset 18360 df-lub 18392 df-glb 18393 df-ipo 18574 df-top 22901 df-ntr 23029 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |