![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatglb | Structured version Visualization version GIF version |
Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
topclat.i | ⊢ 𝐼 = (toInc‘𝐽) |
toplatlub.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
toplatlub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐽) |
toplatglb.g | ⊢ 𝐺 = (glb‘𝐼) |
toplatglb.e | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Ref | Expression |
---|---|
toplatglb | ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topclat.i | . 2 ⊢ 𝐼 = (toInc‘𝐽) | |
2 | toplatlub.j | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | toplatlub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐽) | |
4 | toplatglb.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
6 | toplatglb.e | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
7 | intssuni 4975 | . . . . . 6 ⊢ (𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝑆) |
9 | 3 | unissd 4922 | . . . . 5 ⊢ (𝜑 → ∪ 𝑆 ⊆ ∪ 𝐽) |
10 | 8, 9 | sstrd 4006 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ⊆ ∪ 𝐽) |
11 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
12 | 11 | ntrval 23060 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
13 | 2, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ (𝐽 ∩ 𝒫 ∩ 𝑆)) |
14 | 2 | uniexd 7761 | . . . . 5 ⊢ (𝜑 → ∪ 𝐽 ∈ V) |
15 | 14, 10 | ssexd 5330 | . . . 4 ⊢ (𝜑 → ∩ 𝑆 ∈ V) |
16 | inpw 48667 | . . . . 5 ⊢ (∩ 𝑆 ∈ V → (𝐽 ∩ 𝒫 ∩ 𝑆) = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
17 | 16 | unieqd 4925 | . . . 4 ⊢ (∩ 𝑆 ∈ V → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
18 | 15, 17 | syl 17 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ∩ 𝒫 ∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
19 | 13, 18 | eqtrd 2775 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ 𝑆}) |
20 | 11 | ntropn 23073 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∩ 𝑆 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
21 | 2, 10, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → ((int‘𝐽)‘∩ 𝑆) ∈ 𝐽) |
22 | 1, 2, 3, 5, 19, 21 | ipoglb 48780 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = ((int‘𝐽)‘∩ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 ‘cfv 6563 glbcglb 18368 toInccipo 18585 Topctop 22915 intcnt 23041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-tset 17317 df-ple 17318 df-ocomp 17319 df-odu 18344 df-proset 18352 df-poset 18371 df-lub 18404 df-glb 18405 df-ipo 18586 df-top 22916 df-ntr 23044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |