| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fninfp | Structured version Visualization version GIF version | ||
| Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fninfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 6600 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 2 | 1 | ineq1d 4169 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ I )) |
| 3 | inres 5946 | . . . . . 6 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = (( I ∩ 𝐹) ↾ 𝐴) | |
| 4 | incom 4159 | . . . . . . 7 ⊢ ( I ∩ 𝐹) = (𝐹 ∩ I ) | |
| 5 | 4 | reseq1i 5924 | . . . . . 6 ⊢ (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴) |
| 6 | 3, 5 | eqtri 2754 | . . . . 5 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) |
| 7 | incom 4159 | . . . . 5 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = ( I ∩ (𝐹 ↾ 𝐴)) | |
| 8 | inres 5946 | . . . . 5 ⊢ (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) | |
| 9 | 6, 7, 8 | 3eqtr4i 2764 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)) |
| 10 | 2, 9 | eqtr3di 2781 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))) |
| 11 | 10 | dmeqd 5845 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴))) |
| 12 | fnresi 6610 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 13 | fndmin 6978 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) | |
| 14 | 12, 13 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) |
| 15 | fvresi 7107 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 16 | 15 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 17 | 16 | rabbiia 3399 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| 19 | 11, 14, 18 | 3eqtrd 2770 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3901 I cid 5510 dom cdm 5616 ↾ cres 5618 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fnelfp 7109 |
| Copyright terms: Public domain | W3C validator |