MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fninfp Structured version   Visualization version   GIF version

Theorem fninfp 6933
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fninfp
StepHypRef Expression
1 inres 5846 . . . . . 6 ( I ∩ (𝐹𝐴)) = (( I ∩ 𝐹) ↾ 𝐴)
2 incom 4108 . . . . . . 7 ( I ∩ 𝐹) = (𝐹 ∩ I )
32reseq1i 5824 . . . . . 6 (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴)
41, 3eqtri 2781 . . . . 5 ( I ∩ (𝐹𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
5 incom 4108 . . . . 5 ((𝐹𝐴) ∩ I ) = ( I ∩ (𝐹𝐴))
6 inres 5846 . . . . 5 (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
74, 5, 63eqtr4i 2791 . . . 4 ((𝐹𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))
8 fnresdm 6454 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
98ineq1d 4118 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ I ) = (𝐹 ∩ I ))
107, 9syl5reqr 2808 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)))
1110dmeqd 5751 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴)))
12 fnresi 6464 . . 3 ( I ↾ 𝐴) Fn 𝐴
13 fndmin 6811 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
1412, 13mpan2 690 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
15 fvresi 6932 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1615eqeq2d 2769 . . . 4 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
1716rabbiia 3384 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}
1817a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
1911, 14, 183eqtrd 2797 1 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {crab 3074  cin 3859   I cid 5433  dom cdm 5528  cres 5530   Fn wfn 6335  cfv 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-iota 6299  df-fun 6342  df-fn 6343  df-fv 6348
This theorem is referenced by:  fnelfp  6934
  Copyright terms: Public domain W3C validator