Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fninfp | Structured version Visualization version GIF version |
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fninfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6582 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
2 | 1 | ineq1d 4151 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ I )) |
3 | inres 5921 | . . . . . 6 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = (( I ∩ 𝐹) ↾ 𝐴) | |
4 | incom 4141 | . . . . . . 7 ⊢ ( I ∩ 𝐹) = (𝐹 ∩ I ) | |
5 | 4 | reseq1i 5899 | . . . . . 6 ⊢ (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴) |
6 | 3, 5 | eqtri 2764 | . . . . 5 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) |
7 | incom 4141 | . . . . 5 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = ( I ∩ (𝐹 ↾ 𝐴)) | |
8 | inres 5921 | . . . . 5 ⊢ (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) | |
9 | 6, 7, 8 | 3eqtr4i 2774 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)) |
10 | 2, 9 | eqtr3di 2791 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))) |
11 | 10 | dmeqd 5827 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴))) |
12 | fnresi 6592 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
13 | fndmin 6954 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) | |
14 | 12, 13 | mpan2 689 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) |
15 | fvresi 7077 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
16 | 15 | eqeq2d 2747 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
17 | 16 | rabbiia 3414 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} |
18 | 17 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
19 | 11, 14, 18 | 3eqtrd 2780 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3284 ∩ cin 3891 I cid 5499 dom cdm 5600 ↾ cres 5602 Fn wfn 6453 ‘cfv 6458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fn 6461 df-fv 6466 |
This theorem is referenced by: fnelfp 7079 |
Copyright terms: Public domain | W3C validator |