MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fninfp Structured version   Visualization version   GIF version

Theorem fninfp 7116
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fninfp
StepHypRef Expression
1 fnresdm 6607 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21ineq1d 4168 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ I ) = (𝐹 ∩ I ))
3 inres 5952 . . . . . 6 ( I ∩ (𝐹𝐴)) = (( I ∩ 𝐹) ↾ 𝐴)
4 incom 4158 . . . . . . 7 ( I ∩ 𝐹) = (𝐹 ∩ I )
54reseq1i 5930 . . . . . 6 (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴)
63, 5eqtri 2756 . . . . 5 ( I ∩ (𝐹𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
7 incom 4158 . . . . 5 ((𝐹𝐴) ∩ I ) = ( I ∩ (𝐹𝐴))
8 inres 5952 . . . . 5 (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
96, 7, 83eqtr4i 2766 . . . 4 ((𝐹𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))
102, 9eqtr3di 2783 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)))
1110dmeqd 5851 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴)))
12 fnresi 6617 . . 3 ( I ↾ 𝐴) Fn 𝐴
13 fndmin 6986 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
1412, 13mpan2 691 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
15 fvresi 7115 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1615eqeq2d 2744 . . . 4 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
1716rabbiia 3400 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}
1817a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
1911, 14, 183eqtrd 2772 1 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  cin 3897   I cid 5515  dom cdm 5621  cres 5623   Fn wfn 6483  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fn 6491  df-fv 6496
This theorem is referenced by:  fnelfp  7117
  Copyright terms: Public domain W3C validator