Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fninfp | Structured version Visualization version GIF version |
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fninfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6547 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
2 | 1 | ineq1d 4150 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ I )) |
3 | inres 5906 | . . . . . 6 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = (( I ∩ 𝐹) ↾ 𝐴) | |
4 | incom 4139 | . . . . . . 7 ⊢ ( I ∩ 𝐹) = (𝐹 ∩ I ) | |
5 | 4 | reseq1i 5884 | . . . . . 6 ⊢ (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴) |
6 | 3, 5 | eqtri 2767 | . . . . 5 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) |
7 | incom 4139 | . . . . 5 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = ( I ∩ (𝐹 ↾ 𝐴)) | |
8 | inres 5906 | . . . . 5 ⊢ (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) | |
9 | 6, 7, 8 | 3eqtr4i 2777 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)) |
10 | 2, 9 | eqtr3di 2794 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))) |
11 | 10 | dmeqd 5811 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴))) |
12 | fnresi 6557 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
13 | fndmin 6916 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) | |
14 | 12, 13 | mpan2 687 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) |
15 | fvresi 7039 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
16 | 15 | eqeq2d 2750 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
17 | 16 | rabbiia 3404 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} |
18 | 17 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
19 | 11, 14, 18 | 3eqtrd 2783 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 {crab 3069 ∩ cin 3890 I cid 5487 dom cdm 5588 ↾ cres 5590 Fn wfn 6425 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 |
This theorem is referenced by: fnelfp 7041 |
Copyright terms: Public domain | W3C validator |