| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fninfp | Structured version Visualization version GIF version | ||
| Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fninfp | ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 6640 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 2 | 1 | ineq1d 4185 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ I )) |
| 3 | inres 5971 | . . . . . 6 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = (( I ∩ 𝐹) ↾ 𝐴) | |
| 4 | incom 4175 | . . . . . . 7 ⊢ ( I ∩ 𝐹) = (𝐹 ∩ I ) | |
| 5 | 4 | reseq1i 5949 | . . . . . 6 ⊢ (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴) |
| 6 | 3, 5 | eqtri 2753 | . . . . 5 ⊢ ( I ∩ (𝐹 ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) |
| 7 | incom 4175 | . . . . 5 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = ( I ∩ (𝐹 ↾ 𝐴)) | |
| 8 | inres 5971 | . . . . 5 ⊢ (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴) | |
| 9 | 6, 7, 8 | 3eqtr4i 2763 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)) |
| 10 | 2, 9 | eqtr3di 2780 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))) |
| 11 | 10 | dmeqd 5872 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴))) |
| 12 | fnresi 6650 | . . 3 ⊢ ( I ↾ 𝐴) Fn 𝐴 | |
| 13 | fndmin 7020 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) | |
| 14 | 12, 13 | mpan2 691 | . 2 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)}) |
| 15 | fvresi 7150 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | |
| 16 | 15 | eqeq2d 2741 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹‘𝑥) = 𝑥)) |
| 17 | 16 | rabbiia 3412 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥} |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝐹 Fn 𝐴 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| 19 | 11, 14, 18 | 3eqtrd 2769 | 1 ⊢ (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 I cid 5535 dom cdm 5641 ↾ cres 5643 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: fnelfp 7152 |
| Copyright terms: Public domain | W3C validator |