MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fninfp Structured version   Visualization version   GIF version

Theorem fninfp 7114
Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fninfp (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem fninfp
StepHypRef Expression
1 fnresdm 6605 . . . . 5 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21ineq1d 4172 . . . 4 (𝐹 Fn 𝐴 → ((𝐹𝐴) ∩ I ) = (𝐹 ∩ I ))
3 inres 5952 . . . . . 6 ( I ∩ (𝐹𝐴)) = (( I ∩ 𝐹) ↾ 𝐴)
4 incom 4162 . . . . . . 7 ( I ∩ 𝐹) = (𝐹 ∩ I )
54reseq1i 5930 . . . . . 6 (( I ∩ 𝐹) ↾ 𝐴) = ((𝐹 ∩ I ) ↾ 𝐴)
63, 5eqtri 2752 . . . . 5 ( I ∩ (𝐹𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
7 incom 4162 . . . . 5 ((𝐹𝐴) ∩ I ) = ( I ∩ (𝐹𝐴))
8 inres 5952 . . . . 5 (𝐹 ∩ ( I ↾ 𝐴)) = ((𝐹 ∩ I ) ↾ 𝐴)
96, 7, 83eqtr4i 2762 . . . 4 ((𝐹𝐴) ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴))
102, 9eqtr3di 2779 . . 3 (𝐹 Fn 𝐴 → (𝐹 ∩ I ) = (𝐹 ∩ ( I ↾ 𝐴)))
1110dmeqd 5852 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = dom (𝐹 ∩ ( I ↾ 𝐴)))
12 fnresi 6615 . . 3 ( I ↾ 𝐴) Fn 𝐴
13 fndmin 6983 . . 3 ((𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴) → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
1412, 13mpan2 691 . 2 (𝐹 Fn 𝐴 → dom (𝐹 ∩ ( I ↾ 𝐴)) = {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)})
15 fvresi 7113 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
1615eqeq2d 2740 . . . 4 (𝑥𝐴 → ((𝐹𝑥) = (( I ↾ 𝐴)‘𝑥) ↔ (𝐹𝑥) = 𝑥))
1716rabbiia 3400 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥}
1817a1i 11 . 2 (𝐹 Fn 𝐴 → {𝑥𝐴 ∣ (𝐹𝑥) = (( I ↾ 𝐴)‘𝑥)} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
1911, 14, 183eqtrd 2768 1 (𝐹 Fn 𝐴 → dom (𝐹 ∩ I ) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  cin 3904   I cid 5517  dom cdm 5623  cres 5625   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fnelfp  7115
  Copyright terms: Public domain W3C validator