MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindm Structured version   Visualization version   GIF version

Theorem resindm 5696
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))

Proof of Theorem resindm
StepHypRef Expression
1 resdm 5693 . . 3 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
21ineq2d 4037 . 2 (Rel 𝐴 → ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴𝐵) ∩ 𝐴))
3 resindi 5664 . 2 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴))
4 incom 4028 . . 3 ((𝐴𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴𝐵))
5 inres 5666 . . 3 (𝐴 ∩ (𝐴𝐵)) = ((𝐴𝐴) ↾ 𝐵)
6 inidm 4043 . . . 4 (𝐴𝐴) = 𝐴
76reseq1i 5640 . . 3 ((𝐴𝐴) ↾ 𝐵) = (𝐴𝐵)
84, 5, 73eqtrri 2807 . 2 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐴)
92, 3, 83eqtr4g 2839 1 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  cin 3791  dom cdm 5357  cres 5359  Rel wrel 5362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-dm 5367  df-res 5369
This theorem is referenced by:  resdmdfsn  5697  resfnfinfin  8536  resfifsupp  8593  poimirlem3  34047  fresin2  40290  limsupvaluz  40862  cncfuni  41041  fourierdlem48  41312  fourierdlem49  41313  fourierdlem113  41377  sssmf  41888
  Copyright terms: Public domain W3C validator