| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resindm | Structured version Visualization version GIF version | ||
| Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
| Ref | Expression |
|---|---|
| resindm | ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm 5974 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 2 | 1 | ineq2d 4167 | . 2 ⊢ (Rel 𝐴 → ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ 𝐴)) |
| 3 | resindi 5943 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) | |
| 4 | incom 4156 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 ↾ 𝐵)) | |
| 5 | inres 5945 | . . 3 ⊢ (𝐴 ∩ (𝐴 ↾ 𝐵)) = ((𝐴 ∩ 𝐴) ↾ 𝐵) | |
| 6 | inidm 4174 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | 6 | reseq1i 5923 | . . 3 ⊢ ((𝐴 ∩ 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| 8 | 4, 5, 7 | 3eqtrri 2759 | . 2 ⊢ (𝐴 ↾ 𝐵) = ((𝐴 ↾ 𝐵) ∩ 𝐴) |
| 9 | 2, 3, 8 | 3eqtr4g 2791 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 |
| This theorem is referenced by: resdmdfsn 5979 resfnfinfin 9221 resfifsupp 9281 poimirlem3 37671 fresin2 45217 limsupvaluz 45754 cncfuni 45932 fourierdlem48 46200 fourierdlem49 46201 fourierdlem113 46265 sssmf 46784 |
| Copyright terms: Public domain | W3C validator |