MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindm Structured version   Visualization version   GIF version

Theorem resindm 6059
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))

Proof of Theorem resindm
StepHypRef Expression
1 resdm 6055 . . 3 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
21ineq2d 4241 . 2 (Rel 𝐴 → ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴𝐵) ∩ 𝐴))
3 resindi 6025 . 2 (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴𝐵) ∩ (𝐴 ↾ dom 𝐴))
4 incom 4230 . . 3 ((𝐴𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴𝐵))
5 inres 6027 . . 3 (𝐴 ∩ (𝐴𝐵)) = ((𝐴𝐴) ↾ 𝐵)
6 inidm 4248 . . . 4 (𝐴𝐴) = 𝐴
76reseq1i 6005 . . 3 ((𝐴𝐴) ↾ 𝐵) = (𝐴𝐵)
84, 5, 73eqtrri 2773 . 2 (𝐴𝐵) = ((𝐴𝐵) ∩ 𝐴)
92, 3, 83eqtr4g 2805 1 (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  dom cdm 5700  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712
This theorem is referenced by:  resdmdfsn  6060  resfnfinfin  9405  resfifsupp  9466  poimirlem3  37583  fresin2  45079  limsupvaluz  45629  cncfuni  45807  fourierdlem48  46075  fourierdlem49  46076  fourierdlem113  46140  sssmf  46659
  Copyright terms: Public domain W3C validator