| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resindm | Structured version Visualization version GIF version | ||
| Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.) |
| Ref | Expression |
|---|---|
| resindm | ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm 5986 | . . 3 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 2 | 1 | ineq2d 4179 | . 2 ⊢ (Rel 𝐴 → ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ 𝐴)) |
| 3 | resindi 5955 | . 2 ⊢ (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = ((𝐴 ↾ 𝐵) ∩ (𝐴 ↾ dom 𝐴)) | |
| 4 | incom 4168 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐴 ↾ 𝐵)) | |
| 5 | inres 5957 | . . 3 ⊢ (𝐴 ∩ (𝐴 ↾ 𝐵)) = ((𝐴 ∩ 𝐴) ↾ 𝐵) | |
| 6 | inidm 4186 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | 6 | reseq1i 5935 | . . 3 ⊢ ((𝐴 ∩ 𝐴) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| 8 | 4, 5, 7 | 3eqtrri 2757 | . 2 ⊢ (𝐴 ↾ 𝐵) = ((𝐴 ↾ 𝐵) ∩ 𝐴) |
| 9 | 2, 3, 8 | 3eqtr4g 2789 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ (𝐵 ∩ dom 𝐴)) = (𝐴 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3910 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 |
| This theorem is referenced by: resdmdfsn 5991 resfnfinfin 9264 resfifsupp 9324 poimirlem3 37590 fresin2 45139 limsupvaluz 45679 cncfuni 45857 fourierdlem48 46125 fourierdlem49 46126 fourierdlem113 46190 sssmf 46709 |
| Copyright terms: Public domain | W3C validator |