Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcom2 Structured version   Visualization version   GIF version

Theorem symgcom2 32232
Description: Two permutations 𝑋 and 𝑌 commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Hypotheses
Ref Expression
symgcom.g 𝐺 = (SymGrp‘𝐴)
symgcom.b 𝐵 = (Base‘𝐺)
symgcom.x (𝜑𝑋𝐵)
symgcom.y (𝜑𝑌𝐵)
symgcom2.1 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
Assertion
Ref Expression
symgcom2 (𝜑 → (𝑋𝑌) = (𝑌𝑋))

Proof of Theorem symgcom2
StepHypRef Expression
1 symgcom.g . 2 𝐺 = (SymGrp‘𝐴)
2 symgcom.b . 2 𝐵 = (Base‘𝐺)
3 symgcom.x . 2 (𝜑𝑋𝐵)
4 symgcom.y . 2 (𝜑𝑌𝐵)
51, 2symgbasf 19237 . . . . . 6 (𝑋𝐵𝑋:𝐴𝐴)
63, 5syl 17 . . . . 5 (𝜑𝑋:𝐴𝐴)
76ffnd 6715 . . . 4 (𝜑𝑋 Fn 𝐴)
8 fnresi 6676 . . . . 5 ( I ↾ 𝐴) Fn 𝐴
98a1i 11 . . . 4 (𝜑 → ( I ↾ 𝐴) Fn 𝐴)
10 difssd 4131 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴)
11 ssidd 4004 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ (𝐴 ∖ dom (𝑋 ∖ I )))
12 nfpconfp 31843 . . . . . . 7 (𝑋 Fn 𝐴 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
137, 12syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
14 inres 5997 . . . . . . . 8 (𝑋 ∩ ( I ↾ 𝐴)) = ((𝑋 ∩ I ) ↾ 𝐴)
15 reli 5824 . . . . . . . . . 10 Rel I
16 relin2 5811 . . . . . . . . . 10 (Rel I → Rel (𝑋 ∩ I ))
1715, 16ax-mp 5 . . . . . . . . 9 Rel (𝑋 ∩ I )
1813, 10eqsstrrd 4020 . . . . . . . . 9 (𝜑 → dom (𝑋 ∩ I ) ⊆ 𝐴)
19 relssres 6020 . . . . . . . . 9 ((Rel (𝑋 ∩ I ) ∧ dom (𝑋 ∩ I ) ⊆ 𝐴) → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2017, 18, 19sylancr 587 . . . . . . . 8 (𝜑 → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2114, 20eqtrid 2784 . . . . . . 7 (𝜑 → (𝑋 ∩ ( I ↾ 𝐴)) = (𝑋 ∩ I ))
2221dmeqd 5903 . . . . . 6 (𝜑 → dom (𝑋 ∩ ( I ↾ 𝐴)) = dom (𝑋 ∩ I ))
2313, 22eqtr4d 2775 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ ( I ↾ 𝐴)))
2411, 23sseqtrd 4021 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴)))
25 fnreseql 7046 . . . . 5 ((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) → ((𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) ↔ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))))
2625biimpar 478 . . . 4 (((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
277, 9, 10, 24, 26syl31anc 1373 . . 3 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2810resabs1d 6010 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2927, 28eqtrd 2772 . 2 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
301, 2symgbasf 19237 . . . . . 6 (𝑌𝐵𝑌:𝐴𝐴)
314, 30syl 17 . . . . 5 (𝜑𝑌:𝐴𝐴)
3231ffnd 6715 . . . 4 (𝜑𝑌 Fn 𝐴)
33 difss 4130 . . . . . 6 (𝑋 ∖ I ) ⊆ 𝑋
34 dmss 5900 . . . . . 6 ((𝑋 ∖ I ) ⊆ 𝑋 → dom (𝑋 ∖ I ) ⊆ dom 𝑋)
3533, 34ax-mp 5 . . . . 5 dom (𝑋 ∖ I ) ⊆ dom 𝑋
36 fdm 6723 . . . . . 6 (𝑋:𝐴𝐴 → dom 𝑋 = 𝐴)
373, 5, 363syl 18 . . . . 5 (𝜑 → dom 𝑋 = 𝐴)
3835, 37sseqtrid 4033 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ 𝐴)
39 symgcom2.1 . . . . . . 7 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
40 reldisj 4450 . . . . . . . 8 (dom (𝑋 ∖ I ) ⊆ 𝐴 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4138, 40syl 17 . . . . . . 7 (𝜑 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4239, 41mpbid 231 . . . . . 6 (𝜑 → dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I )))
43 nfpconfp 31843 . . . . . . 7 (𝑌 Fn 𝐴 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4432, 43syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4542, 44sseqtrd 4021 . . . . 5 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ I ))
46 inres 5997 . . . . . . 7 (𝑌 ∩ ( I ↾ 𝐴)) = ((𝑌 ∩ I ) ↾ 𝐴)
47 relin2 5811 . . . . . . . . 9 (Rel I → Rel (𝑌 ∩ I ))
4815, 47ax-mp 5 . . . . . . . 8 Rel (𝑌 ∩ I )
49 difssd 4131 . . . . . . . . 9 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) ⊆ 𝐴)
5044, 49eqsstrrd 4020 . . . . . . . 8 (𝜑 → dom (𝑌 ∩ I ) ⊆ 𝐴)
51 relssres 6020 . . . . . . . 8 ((Rel (𝑌 ∩ I ) ∧ dom (𝑌 ∩ I ) ⊆ 𝐴) → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5248, 50, 51sylancr 587 . . . . . . 7 (𝜑 → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5346, 52eqtrid 2784 . . . . . 6 (𝜑 → (𝑌 ∩ ( I ↾ 𝐴)) = (𝑌 ∩ I ))
5453dmeqd 5903 . . . . 5 (𝜑 → dom (𝑌 ∩ ( I ↾ 𝐴)) = dom (𝑌 ∩ I ))
5545, 54sseqtrrd 4022 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴)))
56 fnreseql 7046 . . . . 5 ((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) → ((𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) ↔ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))))
5756biimpar 478 . . . 4 (((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) ∧ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5832, 9, 38, 55, 57syl31anc 1373 . . 3 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5938resabs1d 6010 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
6058, 59eqtrd 2772 . 2 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
61 difin2 4290 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
6238, 61syl 17 . . 3 (𝜑 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
63 difid 4369 . . 3 (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ∅
6462, 63eqtr3di 2787 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )) = ∅)
65 undif1 4474 . . 3 ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = (𝐴 ∪ dom (𝑋 ∖ I ))
66 ssequn2 4182 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 ↔ (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6738, 66sylib 217 . . 3 (𝜑 → (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6865, 67eqtrid 2784 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = 𝐴)
691, 2, 3, 4, 29, 60, 64, 68symgcom 32231 1 (𝜑 → (𝑋𝑌) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321   I cid 5572  dom cdm 5675  cres 5677  ccom 5679  Rel wrel 5680   Fn wfn 6535  wf 6536  cfv 6540  Basecbs 17140  SymGrpcsymg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229
This theorem is referenced by:  symgcntz  32233
  Copyright terms: Public domain W3C validator