Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcom2 Structured version   Visualization version   GIF version

Theorem symgcom2 33077
Description: Two permutations 𝑋 and 𝑌 commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Hypotheses
Ref Expression
symgcom.g 𝐺 = (SymGrp‘𝐴)
symgcom.b 𝐵 = (Base‘𝐺)
symgcom.x (𝜑𝑋𝐵)
symgcom.y (𝜑𝑌𝐵)
symgcom2.1 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
Assertion
Ref Expression
symgcom2 (𝜑 → (𝑋𝑌) = (𝑌𝑋))

Proof of Theorem symgcom2
StepHypRef Expression
1 symgcom.g . 2 𝐺 = (SymGrp‘𝐴)
2 symgcom.b . 2 𝐵 = (Base‘𝐺)
3 symgcom.x . 2 (𝜑𝑋𝐵)
4 symgcom.y . 2 (𝜑𝑌𝐵)
51, 2symgbasf 19417 . . . . . 6 (𝑋𝐵𝑋:𝐴𝐴)
63, 5syl 17 . . . . 5 (𝜑𝑋:𝐴𝐴)
76ffnd 6748 . . . 4 (𝜑𝑋 Fn 𝐴)
8 fnresi 6709 . . . . 5 ( I ↾ 𝐴) Fn 𝐴
98a1i 11 . . . 4 (𝜑 → ( I ↾ 𝐴) Fn 𝐴)
10 difssd 4160 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴)
11 ssidd 4032 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ (𝐴 ∖ dom (𝑋 ∖ I )))
12 nfpconfp 32651 . . . . . . 7 (𝑋 Fn 𝐴 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
137, 12syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
14 inres 6027 . . . . . . . 8 (𝑋 ∩ ( I ↾ 𝐴)) = ((𝑋 ∩ I ) ↾ 𝐴)
15 reli 5850 . . . . . . . . . 10 Rel I
16 relin2 5837 . . . . . . . . . 10 (Rel I → Rel (𝑋 ∩ I ))
1715, 16ax-mp 5 . . . . . . . . 9 Rel (𝑋 ∩ I )
1813, 10eqsstrrd 4048 . . . . . . . . 9 (𝜑 → dom (𝑋 ∩ I ) ⊆ 𝐴)
19 relssres 6051 . . . . . . . . 9 ((Rel (𝑋 ∩ I ) ∧ dom (𝑋 ∩ I ) ⊆ 𝐴) → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2017, 18, 19sylancr 586 . . . . . . . 8 (𝜑 → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2114, 20eqtrid 2792 . . . . . . 7 (𝜑 → (𝑋 ∩ ( I ↾ 𝐴)) = (𝑋 ∩ I ))
2221dmeqd 5930 . . . . . 6 (𝜑 → dom (𝑋 ∩ ( I ↾ 𝐴)) = dom (𝑋 ∩ I ))
2313, 22eqtr4d 2783 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ ( I ↾ 𝐴)))
2411, 23sseqtrd 4049 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴)))
25 fnreseql 7081 . . . . 5 ((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) → ((𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) ↔ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))))
2625biimpar 477 . . . 4 (((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
277, 9, 10, 24, 26syl31anc 1373 . . 3 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2810resabs1d 6037 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2927, 28eqtrd 2780 . 2 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
301, 2symgbasf 19417 . . . . . 6 (𝑌𝐵𝑌:𝐴𝐴)
314, 30syl 17 . . . . 5 (𝜑𝑌:𝐴𝐴)
3231ffnd 6748 . . . 4 (𝜑𝑌 Fn 𝐴)
33 difss 4159 . . . . . 6 (𝑋 ∖ I ) ⊆ 𝑋
34 dmss 5927 . . . . . 6 ((𝑋 ∖ I ) ⊆ 𝑋 → dom (𝑋 ∖ I ) ⊆ dom 𝑋)
3533, 34ax-mp 5 . . . . 5 dom (𝑋 ∖ I ) ⊆ dom 𝑋
36 fdm 6756 . . . . . 6 (𝑋:𝐴𝐴 → dom 𝑋 = 𝐴)
373, 5, 363syl 18 . . . . 5 (𝜑 → dom 𝑋 = 𝐴)
3835, 37sseqtrid 4061 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ 𝐴)
39 symgcom2.1 . . . . . . 7 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
40 reldisj 4476 . . . . . . . 8 (dom (𝑋 ∖ I ) ⊆ 𝐴 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4138, 40syl 17 . . . . . . 7 (𝜑 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4239, 41mpbid 232 . . . . . 6 (𝜑 → dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I )))
43 nfpconfp 32651 . . . . . . 7 (𝑌 Fn 𝐴 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4432, 43syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4542, 44sseqtrd 4049 . . . . 5 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ I ))
46 inres 6027 . . . . . . 7 (𝑌 ∩ ( I ↾ 𝐴)) = ((𝑌 ∩ I ) ↾ 𝐴)
47 relin2 5837 . . . . . . . . 9 (Rel I → Rel (𝑌 ∩ I ))
4815, 47ax-mp 5 . . . . . . . 8 Rel (𝑌 ∩ I )
49 difssd 4160 . . . . . . . . 9 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) ⊆ 𝐴)
5044, 49eqsstrrd 4048 . . . . . . . 8 (𝜑 → dom (𝑌 ∩ I ) ⊆ 𝐴)
51 relssres 6051 . . . . . . . 8 ((Rel (𝑌 ∩ I ) ∧ dom (𝑌 ∩ I ) ⊆ 𝐴) → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5248, 50, 51sylancr 586 . . . . . . 7 (𝜑 → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5346, 52eqtrid 2792 . . . . . 6 (𝜑 → (𝑌 ∩ ( I ↾ 𝐴)) = (𝑌 ∩ I ))
5453dmeqd 5930 . . . . 5 (𝜑 → dom (𝑌 ∩ ( I ↾ 𝐴)) = dom (𝑌 ∩ I ))
5545, 54sseqtrrd 4050 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴)))
56 fnreseql 7081 . . . . 5 ((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) → ((𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) ↔ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))))
5756biimpar 477 . . . 4 (((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) ∧ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5832, 9, 38, 55, 57syl31anc 1373 . . 3 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5938resabs1d 6037 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
6058, 59eqtrd 2780 . 2 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
61 difin2 4320 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
6238, 61syl 17 . . 3 (𝜑 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
63 difid 4398 . . 3 (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ∅
6462, 63eqtr3di 2795 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )) = ∅)
65 undif1 4499 . . 3 ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = (𝐴 ∪ dom (𝑋 ∖ I ))
66 ssequn2 4212 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 ↔ (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6738, 66sylib 218 . . 3 (𝜑 → (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6865, 67eqtrid 2792 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = 𝐴)
691, 2, 3, 4, 29, 60, 64, 68symgcom 33076 1 (𝜑 → (𝑋𝑌) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352   I cid 5592  dom cdm 5700  cres 5702  ccom 5704  Rel wrel 5705   Fn wfn 6568  wf 6569  cfv 6573  Basecbs 17258  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411
This theorem is referenced by:  symgcntz  33078
  Copyright terms: Public domain W3C validator