Proof of Theorem symgcom2
Step | Hyp | Ref
| Expression |
1 | | symgcom.g |
. 2
⊢ 𝐺 = (SymGrp‘𝐴) |
2 | | symgcom.b |
. 2
⊢ 𝐵 = (Base‘𝐺) |
3 | | symgcom.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
4 | | symgcom.y |
. 2
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
5 | 1, 2 | symgbasf 18983 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → 𝑋:𝐴⟶𝐴) |
6 | 3, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋:𝐴⟶𝐴) |
7 | 6 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝑋 Fn 𝐴) |
8 | | fnresi 6561 |
. . . . 5
⊢ ( I
↾ 𝐴) Fn 𝐴 |
9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → ( I ↾ 𝐴) Fn 𝐴) |
10 | | difssd 4067 |
. . . 4
⊢ (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) |
11 | | ssidd 3944 |
. . . . 5
⊢ (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ (𝐴 ∖ dom (𝑋 ∖ I ))) |
12 | | nfpconfp 30967 |
. . . . . . 7
⊢ (𝑋 Fn 𝐴 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I )) |
13 | 7, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I )) |
14 | | inres 5909 |
. . . . . . . 8
⊢ (𝑋 ∩ ( I ↾ 𝐴)) = ((𝑋 ∩ I ) ↾ 𝐴) |
15 | | reli 5736 |
. . . . . . . . . 10
⊢ Rel
I |
16 | | relin2 5723 |
. . . . . . . . . 10
⊢ (Rel I
→ Rel (𝑋 ∩ I
)) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . 9
⊢ Rel
(𝑋 ∩ I
) |
18 | 13, 10 | eqsstrrd 3960 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑋 ∩ I ) ⊆ 𝐴) |
19 | | relssres 5932 |
. . . . . . . . 9
⊢ ((Rel
(𝑋 ∩ I ) ∧ dom
(𝑋 ∩ I ) ⊆ 𝐴) → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I )) |
20 | 17, 18, 19 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I )) |
21 | 14, 20 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∩ ( I ↾ 𝐴)) = (𝑋 ∩ I )) |
22 | 21 | dmeqd 5814 |
. . . . . 6
⊢ (𝜑 → dom (𝑋 ∩ ( I ↾ 𝐴)) = dom (𝑋 ∩ I )) |
23 | 13, 22 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ ( I ↾ 𝐴))) |
24 | 11, 23 | sseqtrd 3961 |
. . . 4
⊢ (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) |
25 | | fnreseql 6925 |
. . . . 5
⊢ ((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) → ((𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) ↔ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴)))) |
26 | 25 | biimpar 478 |
. . . 4
⊢ (((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I )))) |
27 | 7, 9, 10, 24, 26 | syl31anc 1372 |
. . 3
⊢ (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I )))) |
28 | 10 | resabs1d 5922 |
. . 3
⊢ (𝜑 → (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I )))) |
29 | 27, 28 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I )))) |
30 | 1, 2 | symgbasf 18983 |
. . . . . 6
⊢ (𝑌 ∈ 𝐵 → 𝑌:𝐴⟶𝐴) |
31 | 4, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌:𝐴⟶𝐴) |
32 | 31 | ffnd 6601 |
. . . 4
⊢ (𝜑 → 𝑌 Fn 𝐴) |
33 | | difss 4066 |
. . . . . 6
⊢ (𝑋 ∖ I ) ⊆ 𝑋 |
34 | | dmss 5811 |
. . . . . 6
⊢ ((𝑋 ∖ I ) ⊆ 𝑋 → dom (𝑋 ∖ I ) ⊆ dom 𝑋) |
35 | 33, 34 | ax-mp 5 |
. . . . 5
⊢ dom
(𝑋 ∖ I ) ⊆ dom
𝑋 |
36 | | fdm 6609 |
. . . . . 6
⊢ (𝑋:𝐴⟶𝐴 → dom 𝑋 = 𝐴) |
37 | 3, 5, 36 | 3syl 18 |
. . . . 5
⊢ (𝜑 → dom 𝑋 = 𝐴) |
38 | 35, 37 | sseqtrid 3973 |
. . . 4
⊢ (𝜑 → dom (𝑋 ∖ I ) ⊆ 𝐴) |
39 | | symgcom2.1 |
. . . . . . 7
⊢ (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅) |
40 | | reldisj 4385 |
. . . . . . . 8
⊢ (dom
(𝑋 ∖ I ) ⊆
𝐴 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔
dom (𝑋 ∖ I ) ⊆
(𝐴 ∖ dom (𝑌 ∖ I )))) |
41 | 38, 40 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I )))) |
42 | 39, 41 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))) |
43 | | nfpconfp 30967 |
. . . . . . 7
⊢ (𝑌 Fn 𝐴 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I )) |
44 | 32, 43 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I )) |
45 | 42, 44 | sseqtrd 3961 |
. . . . 5
⊢ (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ I )) |
46 | | inres 5909 |
. . . . . . 7
⊢ (𝑌 ∩ ( I ↾ 𝐴)) = ((𝑌 ∩ I ) ↾ 𝐴) |
47 | | relin2 5723 |
. . . . . . . . 9
⊢ (Rel I
→ Rel (𝑌 ∩ I
)) |
48 | 15, 47 | ax-mp 5 |
. . . . . . . 8
⊢ Rel
(𝑌 ∩ I
) |
49 | | difssd 4067 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) ⊆ 𝐴) |
50 | 44, 49 | eqsstrrd 3960 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑌 ∩ I ) ⊆ 𝐴) |
51 | | relssres 5932 |
. . . . . . . 8
⊢ ((Rel
(𝑌 ∩ I ) ∧ dom
(𝑌 ∩ I ) ⊆ 𝐴) → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I )) |
52 | 48, 50, 51 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I )) |
53 | 46, 52 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∩ ( I ↾ 𝐴)) = (𝑌 ∩ I )) |
54 | 53 | dmeqd 5814 |
. . . . 5
⊢ (𝜑 → dom (𝑌 ∩ ( I ↾ 𝐴)) = dom (𝑌 ∩ I )) |
55 | 45, 54 | sseqtrrd 3962 |
. . . 4
⊢ (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) |
56 | | fnreseql 6925 |
. . . . 5
⊢ ((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) → ((𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) ↔ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴)))) |
57 | 56 | biimpar 478 |
. . . 4
⊢ (((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) ∧ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I ))) |
58 | 32, 9, 38, 55, 57 | syl31anc 1372 |
. . 3
⊢ (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I ))) |
59 | 38 | resabs1d 5922 |
. . 3
⊢ (𝜑 → (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I ))) |
60 | 58, 59 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I ))) |
61 | | difin2 4225 |
. . . 4
⊢ (dom
(𝑋 ∖ I ) ⊆
𝐴 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I ))) |
62 | 38, 61 | syl 17 |
. . 3
⊢ (𝜑 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I ))) |
63 | | difid 4304 |
. . 3
⊢ (dom
(𝑋 ∖ I ) ∖ dom
(𝑋 ∖ I )) =
∅ |
64 | 62, 63 | eqtr3di 2793 |
. 2
⊢ (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )) = ∅) |
65 | | undif1 4409 |
. . 3
⊢ ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = (𝐴 ∪ dom (𝑋 ∖ I )) |
66 | | ssequn2 4117 |
. . . 4
⊢ (dom
(𝑋 ∖ I ) ⊆
𝐴 ↔ (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴) |
67 | 38, 66 | sylib 217 |
. . 3
⊢ (𝜑 → (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴) |
68 | 65, 67 | eqtrid 2790 |
. 2
⊢ (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = 𝐴) |
69 | 1, 2, 3, 4, 29, 60, 64, 68 | symgcom 31352 |
1
⊢ (𝜑 → (𝑋 ∘ 𝑌) = (𝑌 ∘ 𝑋)) |