Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcom2 Structured version   Visualization version   GIF version

Theorem symgcom2 33060
Description: Two permutations 𝑋 and 𝑌 commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Hypotheses
Ref Expression
symgcom.g 𝐺 = (SymGrp‘𝐴)
symgcom.b 𝐵 = (Base‘𝐺)
symgcom.x (𝜑𝑋𝐵)
symgcom.y (𝜑𝑌𝐵)
symgcom2.1 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
Assertion
Ref Expression
symgcom2 (𝜑 → (𝑋𝑌) = (𝑌𝑋))

Proof of Theorem symgcom2
StepHypRef Expression
1 symgcom.g . 2 𝐺 = (SymGrp‘𝐴)
2 symgcom.b . 2 𝐵 = (Base‘𝐺)
3 symgcom.x . 2 (𝜑𝑋𝐵)
4 symgcom.y . 2 (𝜑𝑌𝐵)
51, 2symgbasf 19290 . . . . . 6 (𝑋𝐵𝑋:𝐴𝐴)
63, 5syl 17 . . . . 5 (𝜑𝑋:𝐴𝐴)
76ffnd 6657 . . . 4 (𝜑𝑋 Fn 𝐴)
8 fnresi 6615 . . . . 5 ( I ↾ 𝐴) Fn 𝐴
98a1i 11 . . . 4 (𝜑 → ( I ↾ 𝐴) Fn 𝐴)
10 difssd 4086 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴)
11 ssidd 3954 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ (𝐴 ∖ dom (𝑋 ∖ I )))
12 nfpconfp 32616 . . . . . . 7 (𝑋 Fn 𝐴 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
137, 12syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
14 inres 5950 . . . . . . . 8 (𝑋 ∩ ( I ↾ 𝐴)) = ((𝑋 ∩ I ) ↾ 𝐴)
15 reli 5770 . . . . . . . . . 10 Rel I
16 relin2 5757 . . . . . . . . . 10 (Rel I → Rel (𝑋 ∩ I ))
1715, 16ax-mp 5 . . . . . . . . 9 Rel (𝑋 ∩ I )
1813, 10eqsstrrd 3966 . . . . . . . . 9 (𝜑 → dom (𝑋 ∩ I ) ⊆ 𝐴)
19 relssres 5975 . . . . . . . . 9 ((Rel (𝑋 ∩ I ) ∧ dom (𝑋 ∩ I ) ⊆ 𝐴) → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2017, 18, 19sylancr 587 . . . . . . . 8 (𝜑 → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2114, 20eqtrid 2780 . . . . . . 7 (𝜑 → (𝑋 ∩ ( I ↾ 𝐴)) = (𝑋 ∩ I ))
2221dmeqd 5849 . . . . . 6 (𝜑 → dom (𝑋 ∩ ( I ↾ 𝐴)) = dom (𝑋 ∩ I ))
2313, 22eqtr4d 2771 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ ( I ↾ 𝐴)))
2411, 23sseqtrd 3967 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴)))
25 fnreseql 6987 . . . . 5 ((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) → ((𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) ↔ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))))
2625biimpar 477 . . . 4 (((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
277, 9, 10, 24, 26syl31anc 1375 . . 3 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2810resabs1d 5961 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2927, 28eqtrd 2768 . 2 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
301, 2symgbasf 19290 . . . . . 6 (𝑌𝐵𝑌:𝐴𝐴)
314, 30syl 17 . . . . 5 (𝜑𝑌:𝐴𝐴)
3231ffnd 6657 . . . 4 (𝜑𝑌 Fn 𝐴)
33 difss 4085 . . . . . 6 (𝑋 ∖ I ) ⊆ 𝑋
34 dmss 5846 . . . . . 6 ((𝑋 ∖ I ) ⊆ 𝑋 → dom (𝑋 ∖ I ) ⊆ dom 𝑋)
3533, 34ax-mp 5 . . . . 5 dom (𝑋 ∖ I ) ⊆ dom 𝑋
36 fdm 6665 . . . . . 6 (𝑋:𝐴𝐴 → dom 𝑋 = 𝐴)
373, 5, 363syl 18 . . . . 5 (𝜑 → dom 𝑋 = 𝐴)
3835, 37sseqtrid 3973 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ 𝐴)
39 symgcom2.1 . . . . . . 7 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
40 reldisj 4402 . . . . . . . 8 (dom (𝑋 ∖ I ) ⊆ 𝐴 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4138, 40syl 17 . . . . . . 7 (𝜑 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4239, 41mpbid 232 . . . . . 6 (𝜑 → dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I )))
43 nfpconfp 32616 . . . . . . 7 (𝑌 Fn 𝐴 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4432, 43syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4542, 44sseqtrd 3967 . . . . 5 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ I ))
46 inres 5950 . . . . . . 7 (𝑌 ∩ ( I ↾ 𝐴)) = ((𝑌 ∩ I ) ↾ 𝐴)
47 relin2 5757 . . . . . . . . 9 (Rel I → Rel (𝑌 ∩ I ))
4815, 47ax-mp 5 . . . . . . . 8 Rel (𝑌 ∩ I )
49 difssd 4086 . . . . . . . . 9 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) ⊆ 𝐴)
5044, 49eqsstrrd 3966 . . . . . . . 8 (𝜑 → dom (𝑌 ∩ I ) ⊆ 𝐴)
51 relssres 5975 . . . . . . . 8 ((Rel (𝑌 ∩ I ) ∧ dom (𝑌 ∩ I ) ⊆ 𝐴) → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5248, 50, 51sylancr 587 . . . . . . 7 (𝜑 → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5346, 52eqtrid 2780 . . . . . 6 (𝜑 → (𝑌 ∩ ( I ↾ 𝐴)) = (𝑌 ∩ I ))
5453dmeqd 5849 . . . . 5 (𝜑 → dom (𝑌 ∩ ( I ↾ 𝐴)) = dom (𝑌 ∩ I ))
5545, 54sseqtrrd 3968 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴)))
56 fnreseql 6987 . . . . 5 ((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) → ((𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) ↔ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))))
5756biimpar 477 . . . 4 (((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) ∧ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5832, 9, 38, 55, 57syl31anc 1375 . . 3 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5938resabs1d 5961 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
6058, 59eqtrd 2768 . 2 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
61 difin2 4250 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
6238, 61syl 17 . . 3 (𝜑 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
63 difid 4325 . . 3 (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ∅
6462, 63eqtr3di 2783 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )) = ∅)
65 undif1 4425 . . 3 ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = (𝐴 ∪ dom (𝑋 ∖ I ))
66 ssequn2 4138 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 ↔ (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6738, 66sylib 218 . . 3 (𝜑 → (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6865, 67eqtrid 2780 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = 𝐴)
691, 2, 3, 4, 29, 60, 64, 68symgcom 33059 1 (𝜑 → (𝑋𝑌) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   I cid 5513  dom cdm 5619  cres 5621  ccom 5623  Rel wrel 5624   Fn wfn 6481  wf 6482  cfv 6486  Basecbs 17122  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-tset 17182  df-efmnd 18779  df-symg 19284
This theorem is referenced by:  symgcntz  33061
  Copyright terms: Public domain W3C validator