Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcom2 Structured version   Visualization version   GIF version

Theorem symgcom2 31353
Description: Two permutations 𝑋 and 𝑌 commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.)
Hypotheses
Ref Expression
symgcom.g 𝐺 = (SymGrp‘𝐴)
symgcom.b 𝐵 = (Base‘𝐺)
symgcom.x (𝜑𝑋𝐵)
symgcom.y (𝜑𝑌𝐵)
symgcom2.1 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
Assertion
Ref Expression
symgcom2 (𝜑 → (𝑋𝑌) = (𝑌𝑋))

Proof of Theorem symgcom2
StepHypRef Expression
1 symgcom.g . 2 𝐺 = (SymGrp‘𝐴)
2 symgcom.b . 2 𝐵 = (Base‘𝐺)
3 symgcom.x . 2 (𝜑𝑋𝐵)
4 symgcom.y . 2 (𝜑𝑌𝐵)
51, 2symgbasf 18983 . . . . . 6 (𝑋𝐵𝑋:𝐴𝐴)
63, 5syl 17 . . . . 5 (𝜑𝑋:𝐴𝐴)
76ffnd 6601 . . . 4 (𝜑𝑋 Fn 𝐴)
8 fnresi 6561 . . . . 5 ( I ↾ 𝐴) Fn 𝐴
98a1i 11 . . . 4 (𝜑 → ( I ↾ 𝐴) Fn 𝐴)
10 difssd 4067 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴)
11 ssidd 3944 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ (𝐴 ∖ dom (𝑋 ∖ I )))
12 nfpconfp 30967 . . . . . . 7 (𝑋 Fn 𝐴 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
137, 12syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ I ))
14 inres 5909 . . . . . . . 8 (𝑋 ∩ ( I ↾ 𝐴)) = ((𝑋 ∩ I ) ↾ 𝐴)
15 reli 5736 . . . . . . . . . 10 Rel I
16 relin2 5723 . . . . . . . . . 10 (Rel I → Rel (𝑋 ∩ I ))
1715, 16ax-mp 5 . . . . . . . . 9 Rel (𝑋 ∩ I )
1813, 10eqsstrrd 3960 . . . . . . . . 9 (𝜑 → dom (𝑋 ∩ I ) ⊆ 𝐴)
19 relssres 5932 . . . . . . . . 9 ((Rel (𝑋 ∩ I ) ∧ dom (𝑋 ∩ I ) ⊆ 𝐴) → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2017, 18, 19sylancr 587 . . . . . . . 8 (𝜑 → ((𝑋 ∩ I ) ↾ 𝐴) = (𝑋 ∩ I ))
2114, 20eqtrid 2790 . . . . . . 7 (𝜑 → (𝑋 ∩ ( I ↾ 𝐴)) = (𝑋 ∩ I ))
2221dmeqd 5814 . . . . . 6 (𝜑 → dom (𝑋 ∩ ( I ↾ 𝐴)) = dom (𝑋 ∩ I ))
2313, 22eqtr4d 2781 . . . . 5 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) = dom (𝑋 ∩ ( I ↾ 𝐴)))
2411, 23sseqtrd 3961 . . . 4 (𝜑 → (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴)))
25 fnreseql 6925 . . . . 5 ((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) → ((𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) ↔ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))))
2625biimpar 478 . . . 4 (((𝑋 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ 𝐴) ∧ (𝐴 ∖ dom (𝑋 ∖ I )) ⊆ dom (𝑋 ∩ ( I ↾ 𝐴))) → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
277, 9, 10, 24, 26syl31anc 1372 . . 3 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2810resabs1d 5922 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
2927, 28eqtrd 2778 . 2 (𝜑 → (𝑋 ↾ (𝐴 ∖ dom (𝑋 ∖ I ))) = ( I ↾ (𝐴 ∖ dom (𝑋 ∖ I ))))
301, 2symgbasf 18983 . . . . . 6 (𝑌𝐵𝑌:𝐴𝐴)
314, 30syl 17 . . . . 5 (𝜑𝑌:𝐴𝐴)
3231ffnd 6601 . . . 4 (𝜑𝑌 Fn 𝐴)
33 difss 4066 . . . . . 6 (𝑋 ∖ I ) ⊆ 𝑋
34 dmss 5811 . . . . . 6 ((𝑋 ∖ I ) ⊆ 𝑋 → dom (𝑋 ∖ I ) ⊆ dom 𝑋)
3533, 34ax-mp 5 . . . . 5 dom (𝑋 ∖ I ) ⊆ dom 𝑋
36 fdm 6609 . . . . . 6 (𝑋:𝐴𝐴 → dom 𝑋 = 𝐴)
373, 5, 363syl 18 . . . . 5 (𝜑 → dom 𝑋 = 𝐴)
3835, 37sseqtrid 3973 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ 𝐴)
39 symgcom2.1 . . . . . . 7 (𝜑 → (dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅)
40 reldisj 4385 . . . . . . . 8 (dom (𝑋 ∖ I ) ⊆ 𝐴 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4138, 40syl 17 . . . . . . 7 (𝜑 → ((dom (𝑋 ∖ I ) ∩ dom (𝑌 ∖ I )) = ∅ ↔ dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I ))))
4239, 41mpbid 231 . . . . . 6 (𝜑 → dom (𝑋 ∖ I ) ⊆ (𝐴 ∖ dom (𝑌 ∖ I )))
43 nfpconfp 30967 . . . . . . 7 (𝑌 Fn 𝐴 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4432, 43syl 17 . . . . . 6 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) = dom (𝑌 ∩ I ))
4542, 44sseqtrd 3961 . . . . 5 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ I ))
46 inres 5909 . . . . . . 7 (𝑌 ∩ ( I ↾ 𝐴)) = ((𝑌 ∩ I ) ↾ 𝐴)
47 relin2 5723 . . . . . . . . 9 (Rel I → Rel (𝑌 ∩ I ))
4815, 47ax-mp 5 . . . . . . . 8 Rel (𝑌 ∩ I )
49 difssd 4067 . . . . . . . . 9 (𝜑 → (𝐴 ∖ dom (𝑌 ∖ I )) ⊆ 𝐴)
5044, 49eqsstrrd 3960 . . . . . . . 8 (𝜑 → dom (𝑌 ∩ I ) ⊆ 𝐴)
51 relssres 5932 . . . . . . . 8 ((Rel (𝑌 ∩ I ) ∧ dom (𝑌 ∩ I ) ⊆ 𝐴) → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5248, 50, 51sylancr 587 . . . . . . 7 (𝜑 → ((𝑌 ∩ I ) ↾ 𝐴) = (𝑌 ∩ I ))
5346, 52eqtrid 2790 . . . . . 6 (𝜑 → (𝑌 ∩ ( I ↾ 𝐴)) = (𝑌 ∩ I ))
5453dmeqd 5814 . . . . 5 (𝜑 → dom (𝑌 ∩ ( I ↾ 𝐴)) = dom (𝑌 ∩ I ))
5545, 54sseqtrrd 3962 . . . 4 (𝜑 → dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴)))
56 fnreseql 6925 . . . . 5 ((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) → ((𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) ↔ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))))
5756biimpar 478 . . . 4 (((𝑌 Fn 𝐴 ∧ ( I ↾ 𝐴) Fn 𝐴 ∧ dom (𝑋 ∖ I ) ⊆ 𝐴) ∧ dom (𝑋 ∖ I ) ⊆ dom (𝑌 ∩ ( I ↾ 𝐴))) → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5832, 9, 38, 55, 57syl31anc 1372 . . 3 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )))
5938resabs1d 5922 . . 3 (𝜑 → (( I ↾ 𝐴) ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
6058, 59eqtrd 2778 . 2 (𝜑 → (𝑌 ↾ dom (𝑋 ∖ I )) = ( I ↾ dom (𝑋 ∖ I )))
61 difin2 4225 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
6238, 61syl 17 . . 3 (𝜑 → (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )))
63 difid 4304 . . 3 (dom (𝑋 ∖ I ) ∖ dom (𝑋 ∖ I )) = ∅
6462, 63eqtr3di 2793 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∩ dom (𝑋 ∖ I )) = ∅)
65 undif1 4409 . . 3 ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = (𝐴 ∪ dom (𝑋 ∖ I ))
66 ssequn2 4117 . . . 4 (dom (𝑋 ∖ I ) ⊆ 𝐴 ↔ (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6738, 66sylib 217 . . 3 (𝜑 → (𝐴 ∪ dom (𝑋 ∖ I )) = 𝐴)
6865, 67eqtrid 2790 . 2 (𝜑 → ((𝐴 ∖ dom (𝑋 ∖ I )) ∪ dom (𝑋 ∖ I )) = 𝐴)
691, 2, 3, 4, 29, 60, 64, 68symgcom 31352 1 (𝜑 → (𝑋𝑌) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256   I cid 5488  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594   Fn wfn 6428  wf 6429  cfv 6433  Basecbs 16912  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975
This theorem is referenced by:  symgcntz  31354
  Copyright terms: Public domain W3C validator