Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inunissunidif Structured version   Visualization version   GIF version

Theorem inunissunidif 36746
Description: Theorem about subsets of the difference of unions. (Contributed by ML, 29-Mar-2021.)
Assertion
Ref Expression
inunissunidif ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))

Proof of Theorem inunissunidif
StepHypRef Expression
1 reldisj 4443 . . . 4 (𝐴 𝐵 → ((𝐴 𝐶) = ∅ ↔ 𝐴 ⊆ ( 𝐵 𝐶)))
2 difunieq 36745 . . . . 5 ( 𝐵 𝐶) ⊆ (𝐵𝐶)
3 sstr 3982 . . . . 5 ((𝐴 ⊆ ( 𝐵 𝐶) ∧ ( 𝐵 𝐶) ⊆ (𝐵𝐶)) → 𝐴 (𝐵𝐶))
42, 3mpan2 688 . . . 4 (𝐴 ⊆ ( 𝐵 𝐶) → 𝐴 (𝐵𝐶))
51, 4syl6bi 253 . . 3 (𝐴 𝐵 → ((𝐴 𝐶) = ∅ → 𝐴 (𝐵𝐶)))
65com12 32 . 2 ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))
7 difss 4123 . . . 4 (𝐵𝐶) ⊆ 𝐵
87unissi 4908 . . 3 (𝐵𝐶) ⊆ 𝐵
9 sstr 3982 . . 3 ((𝐴 (𝐵𝐶) ∧ (𝐵𝐶) ⊆ 𝐵) → 𝐴 𝐵)
108, 9mpan2 688 . 2 (𝐴 (𝐵𝐶) → 𝐴 𝐵)
116, 10impbid1 224 1 ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  cdif 3937  cin 3939  wss 3940  c0 4314   cuni 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-nul 4315  df-uni 4900
This theorem is referenced by:  pibt2  36788
  Copyright terms: Public domain W3C validator