Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inunissunidif Structured version   Visualization version   GIF version

Theorem inunissunidif 37357
Description: Theorem about subsets of the difference of unions. (Contributed by ML, 29-Mar-2021.)
Assertion
Ref Expression
inunissunidif ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))

Proof of Theorem inunissunidif
StepHypRef Expression
1 reldisj 4458 . . . 4 (𝐴 𝐵 → ((𝐴 𝐶) = ∅ ↔ 𝐴 ⊆ ( 𝐵 𝐶)))
2 difunieq 37356 . . . . 5 ( 𝐵 𝐶) ⊆ (𝐵𝐶)
3 sstr 4003 . . . . 5 ((𝐴 ⊆ ( 𝐵 𝐶) ∧ ( 𝐵 𝐶) ⊆ (𝐵𝐶)) → 𝐴 (𝐵𝐶))
42, 3mpan2 691 . . . 4 (𝐴 ⊆ ( 𝐵 𝐶) → 𝐴 (𝐵𝐶))
51, 4biimtrdi 253 . . 3 (𝐴 𝐵 → ((𝐴 𝐶) = ∅ → 𝐴 (𝐵𝐶)))
65com12 32 . 2 ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))
7 difss 4145 . . . 4 (𝐵𝐶) ⊆ 𝐵
87unissi 4920 . . 3 (𝐵𝐶) ⊆ 𝐵
9 sstr 4003 . . 3 ((𝐴 (𝐵𝐶) ∧ (𝐵𝐶) ⊆ 𝐵) → 𝐴 𝐵)
108, 9mpan2 691 . 2 (𝐴 (𝐵𝐶) → 𝐴 𝐵)
116, 10impbid1 225 1 ((𝐴 𝐶) = ∅ → (𝐴 𝐵𝐴 (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  cdif 3959  cin 3961  wss 3962  c0 4338   cuni 4911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-v 3479  df-dif 3965  df-in 3969  df-ss 3979  df-nul 4339  df-uni 4912
This theorem is referenced by:  pibt2  37399
  Copyright terms: Public domain W3C validator