![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inunissunidif | Structured version Visualization version GIF version |
Description: Theorem about subsets of the difference of unions. (Contributed by ML, 29-Mar-2021.) |
Ref | Expression |
---|---|
inunissunidif | ⊢ ((𝐴 ∩ ∪ 𝐶) = ∅ → (𝐴 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldisj 4458 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 → ((𝐴 ∩ ∪ 𝐶) = ∅ ↔ 𝐴 ⊆ (∪ 𝐵 ∖ ∪ 𝐶))) | |
2 | difunieq 37356 | . . . . 5 ⊢ (∪ 𝐵 ∖ ∪ 𝐶) ⊆ ∪ (𝐵 ∖ 𝐶) | |
3 | sstr 4003 | . . . . 5 ⊢ ((𝐴 ⊆ (∪ 𝐵 ∖ ∪ 𝐶) ∧ (∪ 𝐵 ∖ ∪ 𝐶) ⊆ ∪ (𝐵 ∖ 𝐶)) → 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶)) | |
4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝐴 ⊆ (∪ 𝐵 ∖ ∪ 𝐶) → 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶)) |
5 | 1, 4 | biimtrdi 253 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐵 → ((𝐴 ∩ ∪ 𝐶) = ∅ → 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶))) |
6 | 5 | com12 32 | . 2 ⊢ ((𝐴 ∩ ∪ 𝐶) = ∅ → (𝐴 ⊆ ∪ 𝐵 → 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶))) |
7 | difss 4145 | . . . 4 ⊢ (𝐵 ∖ 𝐶) ⊆ 𝐵 | |
8 | 7 | unissi 4920 | . . 3 ⊢ ∪ (𝐵 ∖ 𝐶) ⊆ ∪ 𝐵 |
9 | sstr 4003 | . . 3 ⊢ ((𝐴 ⊆ ∪ (𝐵 ∖ 𝐶) ∧ ∪ (𝐵 ∖ 𝐶) ⊆ ∪ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
10 | 8, 9 | mpan2 691 | . 2 ⊢ (𝐴 ⊆ ∪ (𝐵 ∖ 𝐶) → 𝐴 ⊆ ∪ 𝐵) |
11 | 6, 10 | impbid1 225 | 1 ⊢ ((𝐴 ∩ ∪ 𝐶) = ∅ → (𝐴 ⊆ ∪ 𝐵 ↔ 𝐴 ⊆ ∪ (𝐵 ∖ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-v 3479 df-dif 3965 df-in 3969 df-ss 3979 df-nul 4339 df-uni 4912 |
This theorem is referenced by: pibt2 37399 |
Copyright terms: Public domain | W3C validator |