Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibt2 Structured version   Visualization version   GIF version

Theorem pibt2 37435
Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 37432 and pibp21 37433 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021.)
Hypotheses
Ref Expression
pibt2.x 𝑋 = 𝐽
pibt2.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
pibt2.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibt2 (𝐽𝐶𝐽𝑊)
Distinct variable groups:   𝑦,𝐽,𝑥,𝑧   𝑦,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibt2
Dummy variables 𝑎 𝑏 𝑠 𝑓 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pibt2.x . . . 4 𝑋 = 𝐽
2 pibt2.19 . . . 4 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
31, 2pibp19 37432 . . 3 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
43simplbi 497 . 2 (𝐽𝐶𝐽 ∈ Top)
5 eldif 3936 . . . . 5 (𝑏 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin))
6 velpw 4580 . . . . . . 7 (𝑏 ∈ 𝒫 𝑋𝑏𝑋)
76anbi1i 624 . . . . . 6 ((𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin) ↔ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin))
8 vex 3463 . . . . . . . . . 10 𝑏 ∈ V
9 infinf 10580 . . . . . . . . . 10 (𝑏 ∈ V → (¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏))
108, 9ax-mp 5 . . . . . . . . 9 𝑏 ∈ Fin ↔ ω ≼ 𝑏)
118infcntss 9334 . . . . . . . . 9 (ω ≼ 𝑏 → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1210, 11sylbi 217 . . . . . . . 8 𝑏 ∈ Fin → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1312ad2antll 729 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
14 sstr 3967 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏𝑋) → 𝑎𝑋)
1514ancoms 458 . . . . . . . . . . . . 13 ((𝑏𝑋𝑎𝑏) → 𝑎𝑋)
16 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → 𝑎 ≈ ω)
17 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝐽𝐶𝑎 ≈ ω))
18 0ss 4375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ∅ ⊆ 𝑎
19 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((limPt‘𝐽)‘𝑎) = ∅ → (((limPt‘𝐽)‘𝑎) ⊆ 𝑎 ↔ ∅ ⊆ 𝑎))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((limPt‘𝐽)‘𝑎) = ∅ → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
2120adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
221cldlp 23088 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2421, 23mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
254, 24sylanl1 680 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
2625adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
27 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) = ∅)
281cldss 22967 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Clsd‘𝐽) → 𝑎𝑋)
291nlpineqsn 37426 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}))
30 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → (𝑛𝑎) = {𝑝})
3130reximi 3074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∃𝑛𝐽 (𝑛𝑎) = {𝑝})
3231ralimi 3073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝})
33 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
34 ineq1 4188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑓𝑝) → (𝑛𝑎) = ((𝑓𝑝) ∩ 𝑎))
3534eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑓𝑝) → ((𝑛𝑎) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
3633, 35ac6s 10498 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝} → ∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
37 fvineqsnf1 37428 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑓:𝑎1-1𝐽)
38 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})
3937, 38jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4039eximi 1835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4129, 32, 36, 404syl 19 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4228, 41syl3an2 1164 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
434, 42syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
44433adant1r 1178 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
45 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → 𝑓:𝑎1-1𝐽)
46 vsnid 4639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑝 ∈ {𝑝}
47 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → (𝑝 ∈ ((𝑓𝑝) ∩ 𝑎) ↔ 𝑝 ∈ {𝑝}))
4846, 47mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ ((𝑓𝑝) ∩ 𝑎))
4948elin1d 4179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ (𝑓𝑝))
5049ralimi 3073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → ∀𝑝𝑎 𝑝 ∈ (𝑓𝑝))
51 ralssiun 37425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 𝑝 ∈ (𝑓𝑝) → 𝑎 𝑝𝑎 (𝑓𝑝))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑎 𝑝𝑎 (𝑓𝑝))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 𝑝𝑎 (𝑓𝑝))
54 f1fn 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:𝑎1-1𝐽𝑓 Fn 𝑎)
55 fniunfv 7239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓 Fn 𝑎 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:𝑎1-1𝐽 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5853, 57sseqtrd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 ran 𝑓)
591cldopn 22969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ (Clsd‘𝐽) → (𝑋𝑎) ∈ 𝐽)
6059ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (𝑋𝑎) ∈ 𝐽)
6160anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → ((𝑋𝑎) ∈ 𝐽𝑎 ran 𝑓))
6261ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))
6328ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → 𝑎𝑋)
6463anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)))
65 unisng 4901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ∈ 𝐽 {(𝑋𝑎)} = (𝑋𝑎))
6665eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) = {(𝑋𝑎)})
67 eqimss 4017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) = {(𝑋𝑎)} → (𝑋𝑎) ⊆ {(𝑋𝑎)})
68 ssun4 4156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ ( ran 𝑓 {(𝑋𝑎)}))
69 uniun 4906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (ran 𝑓 ∪ {(𝑋𝑎)}) = ( ran 𝑓 {(𝑋𝑎)})
7068, 69sseqtrrdi 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
7166, 67, 703syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
72 ssun3 4155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑎 ran 𝑓𝑎 ⊆ ( ran 𝑓 {(𝑋𝑎)}))
7372, 69sseqtrrdi 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ran 𝑓𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}))
74 uncom 4133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎 ∪ (𝑋𝑎)) = ((𝑋𝑎) ∪ 𝑎)
75 undif1 4451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑋𝑎) ∪ 𝑎) = (𝑋𝑎)
7674, 75eqtri 2758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎 ∪ (𝑋𝑎)) = (𝑋𝑎)
77 ssequn2 4164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑋 ↔ (𝑋𝑎) = 𝑋)
7877biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎𝑋 → (𝑋𝑎) = 𝑋)
7976, 78eqtrid 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑎𝑋 → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
81 unss12 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})))
82 unidm 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})) = (ran 𝑓 ∪ {(𝑋𝑎)})
8381, 82sseqtrdi 3999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8580, 84eqsstrrd 3994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8673, 85sylanr1 682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8771, 86sylanr2 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
89 f1f 6774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎1-1𝐽𝑓:𝑎𝐽)
90 frn 6713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎𝐽 → ran 𝑓𝐽)
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓:𝑎1-1𝐽 → ran 𝑓𝐽)
921topopn 22844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋𝐽)
931difopn 22972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝐽𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9492, 93sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9594snssd 4785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → {(𝑋𝑎)} ⊆ 𝐽)
96 unss12 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ (𝐽𝐽))
97 unidm 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽𝐽) = 𝐽
9896, 97sseqtrdi 3999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
9991, 95, 98syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
100 uniss 4891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
101100, 1sseqtrrdi 4000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
10299, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
10488, 103eqssd 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10564, 104syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10662, 105syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10758, 106sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
108107ancom1s 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
109108ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
11045, 109mpand 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
111110impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
112111adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
1134, 112sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
114 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑓 ∈ V
115 f1f1orn 6829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:𝑎1-1𝐽𝑓:𝑎1-1-onto→ran 𝑓)
116 f1oen3g 8981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 ∈ V ∧ 𝑓:𝑎1-1-onto→ran 𝑓) → 𝑎 ≈ ran 𝑓)
117114, 115, 116sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓:𝑎1-1𝐽𝑎 ≈ ran 𝑓)
118 enen1 9131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω ↔ ran 𝑓 ≈ ω))
119 endom 8993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (ran 𝑓 ≈ ω → ran 𝑓 ≼ ω)
120 snfi 9057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 {(𝑋𝑎)} ∈ Fin
121 isfinite 9666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({(𝑋𝑎)} ∈ Fin ↔ {(𝑋𝑎)} ≺ ω)
122120, 121mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 {(𝑋𝑎)} ≺ ω
123 sdomdom 8994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({(𝑋𝑎)} ≺ ω → {(𝑋𝑎)} ≼ ω)
124122, 123ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {(𝑋𝑎)} ≼ ω
125 unctb 10218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ran 𝑓 ≼ ω ∧ {(𝑋𝑎)} ≼ ω) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
126119, 124, 125sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (ran 𝑓 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
127118, 126biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
128117, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:𝑎1-1𝐽 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
129128impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 ≈ ω ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
130129adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
131130ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
13299ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
133132adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
134133adantlrr 721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
1354, 134sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
136 elpw2g 5303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽))
137136biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
138137ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
139135, 138mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽)
1403simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
141 unieq 4894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑠 = 𝑧 𝑠 = 𝑧)
142141eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = 𝑧 → (𝑋 = 𝑠𝑋 = 𝑧))
143142cbvrexvw 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
144143imbi2i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
145144ralbii 3082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
146140, 145sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠))
147 unieq 4894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}))
148147eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑋 = 𝑦𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
149 breq1 5122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑦 ≼ ω ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
150148, 149anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → ((𝑋 = 𝑦𝑦 ≼ ω) ↔ (𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)))
151 pweq 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝒫 𝑦 = 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
152151ineq1d 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝒫 𝑦 ∩ Fin) = (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin))
153152rexeqdv 3306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
154150, 153imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
155154rspccv 3598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
156146, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
157156ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
158139, 157mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
159113, 131, 158mp2and 699 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)
160 df-rex 3061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠))
161 elinel1 4176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
162 velpw 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ↔ 𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
163 ssdif 4119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}))
164 difun2 4456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}) = (ran 𝑓 ∖ {(𝑋𝑎)})
165163, 164sseqtrdi 3999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ (ran 𝑓 ∖ {(𝑋𝑎)}))
166165difss2d 4114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
167162, 166sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
168161, 167syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
169168a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓))
170 sseq2 3985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 = 𝑠 → (𝑎𝑋𝑎 𝑠))
171 uniexg 7734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐽 ∈ Top → 𝐽 ∈ V)
1721, 171eqeltrid 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋 ∈ V)
173 difexg 5299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑋 ∈ V → (𝑋𝑎) ∈ V)
174 unisng 4901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝑎) ∈ V → {(𝑋𝑎)} = (𝑋𝑎))
175172, 173, 1743syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽 ∈ Top → {(𝑋𝑎)} = (𝑋𝑎))
176175ineq2d 4195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = (𝑎 ∩ (𝑋𝑎)))
177 disjdif 4447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ∩ (𝑋𝑎)) = ∅
178176, 177eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = ∅)
179 inunissunidif 37393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎 {(𝑋𝑎)}) = ∅ → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
180178, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐽 ∈ Top → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
181170, 180sylan9bbr 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
182181biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
183182impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑋 = 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
184169, 183anim12d 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
1854, 28, 184syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
186185adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
187186anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)})))))
188117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎 ≈ ran 𝑓)
189 fvineqsneq 37430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓 Fn 𝑎 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
19054, 189sylanl1 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
191 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑠 ∈ V
192 difss 4111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠
193 ssdomg 9014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∈ V → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠 → (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠))
194191, 192, 193mp2 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠
195190, 194eqbrtrrdi 5159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → ran 𝑓𝑠)
196 endomtr 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ≈ ran 𝑓 ∧ ran 𝑓𝑠) → 𝑎𝑠)
197188, 195, 196syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎𝑠)
198187, 197syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → 𝑎𝑠))
199198expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑎𝑠))
200 elinel2 4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ Fin)
201200adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin)
202201a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin))
203199, 202jcad 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → (𝑎𝑠𝑠 ∈ Fin)))
204203eximdv 1917 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
205160, 204biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
206159, 205mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
207206ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
208207exlimdv 1933 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
209208anass1rs 655 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
2102093adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
21144, 210mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
21217, 26, 27, 211syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
213212anasss 466 . . . . . . . . . . . . . . . . . . 19 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
214 isfinite 9666 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ Fin ↔ 𝑠 ≺ ω)
215 domsdomtr 9126 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑠𝑠 ≺ ω) → 𝑎 ≺ ω)
216214, 215sylan2b 594 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
217216exlimiv 1930 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
218 sdomnen 8995 . . . . . . . . . . . . . . . . . . 19 (𝑎 ≺ ω → ¬ 𝑎 ≈ ω)
219213, 217, 2183syl 18 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ¬ 𝑎 ≈ ω)
22016, 219pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝐽𝐶𝑎 ≈ ω) → ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
221 imnan 399 . . . . . . . . . . . . . . . . 17 ((𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅) ↔ ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
222220, 221sylibr 234 . . . . . . . . . . . . . . . 16 ((𝐽𝐶𝑎 ≈ ω) → (𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅))
223222imp 406 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ¬ ((limPt‘𝐽)‘𝑎) = ∅)
224 neq0 4327 . . . . . . . . . . . . . . 15 (¬ ((limPt‘𝐽)‘𝑎) = ∅ ↔ ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
225223, 224sylib 218 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2261lpss 23080 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
2274, 226sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝐽𝐶𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
228227adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
229228sseld 3957 . . . . . . . . . . . . . . . . 17 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠𝑋))
230229ancrd 551 . . . . . . . . . . . . . . . 16 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → (𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
231230eximdv 1917 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
232 df-rex 3061 . . . . . . . . . . . . . . 15 (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) ↔ ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
233231, 232imbitrrdi 252 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
234225, 233mpd 15 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
23515, 234sylan2 593 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2361lpss3 23082 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑏𝑋𝑎𝑏) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2372363expb 1120 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2384, 237sylan 580 . . . . . . . . . . . . . . 15 ((𝐽𝐶 ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
239238adantlr 715 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
240239sseld 3957 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
241240reximdv 3155 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
242235, 241mpd 15 . . . . . . . . . . 11 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
243242an42s 661 . . . . . . . . . 10 (((𝐽𝐶𝑏𝑋) ∧ (𝑎𝑏𝑎 ≈ ω)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
244243ex 412 . . . . . . . . 9 ((𝐽𝐶𝑏𝑋) → ((𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
245244exlimdv 1933 . . . . . . . 8 ((𝐽𝐶𝑏𝑋) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
246245adantrr 717 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
24713, 246mpd 15 . . . . . 6 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2487, 247sylan2b 594 . . . . 5 ((𝐽𝐶 ∧ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2495, 248sylan2b 594 . . . 4 ((𝐽𝐶𝑏 ∈ (𝒫 𝑋 ∖ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
250249ralrimiva 3132 . . 3 (𝐽𝐶 → ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
251 simpr 484 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → 𝑧 = 𝑠)
252 fveq2 6876 . . . . . . 7 (𝑦 = 𝑏 → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
253252adantr 480 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
254251, 253eleq12d 2828 . . . . 5 ((𝑦 = 𝑏𝑧 = 𝑠) → (𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
255254cbvrexdva 3223 . . . 4 (𝑦 = 𝑏 → (∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
256255cbvralvw 3220 . . 3 (∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
257250, 256sylibr 234 . 2 (𝐽𝐶 → ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))
258 pibt2.21 . . 3 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
2591, 258pibp21 37433 . 2 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
2604, 257, 259sylanbrc 583 1 (𝐽𝐶𝐽𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   ciun 4967   class class class wbr 5119  ran crn 5655   Fn wfn 6526  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  ωcom 7861  cen 8956  cdom 8957  csdm 8958  Fincfn 8959  Topctop 22831  Clsdccld 22954  limPtclp 23072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-ac 10130  df-top 22832  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator