Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibt2 Structured version   Visualization version   GIF version

Theorem pibt2 37383
Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 37380 and pibp21 37381 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021.)
Hypotheses
Ref Expression
pibt2.x 𝑋 = 𝐽
pibt2.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
pibt2.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibt2 (𝐽𝐶𝐽𝑊)
Distinct variable groups:   𝑦,𝐽,𝑥,𝑧   𝑦,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibt2
Dummy variables 𝑎 𝑏 𝑠 𝑓 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pibt2.x . . . 4 𝑋 = 𝐽
2 pibt2.19 . . . 4 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
31, 2pibp19 37380 . . 3 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
43simplbi 497 . 2 (𝐽𝐶𝐽 ∈ Top)
5 eldif 3986 . . . . 5 (𝑏 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin))
6 velpw 4627 . . . . . . 7 (𝑏 ∈ 𝒫 𝑋𝑏𝑋)
76anbi1i 623 . . . . . 6 ((𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin) ↔ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin))
8 vex 3492 . . . . . . . . . 10 𝑏 ∈ V
9 infinf 10635 . . . . . . . . . 10 (𝑏 ∈ V → (¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏))
108, 9ax-mp 5 . . . . . . . . 9 𝑏 ∈ Fin ↔ ω ≼ 𝑏)
118infcntss 9390 . . . . . . . . 9 (ω ≼ 𝑏 → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1210, 11sylbi 217 . . . . . . . 8 𝑏 ∈ Fin → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1312ad2antll 728 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
14 sstr 4017 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏𝑋) → 𝑎𝑋)
1514ancoms 458 . . . . . . . . . . . . 13 ((𝑏𝑋𝑎𝑏) → 𝑎𝑋)
16 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → 𝑎 ≈ ω)
17 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝐽𝐶𝑎 ≈ ω))
18 0ss 4423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ∅ ⊆ 𝑎
19 sseq1 4034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((limPt‘𝐽)‘𝑎) = ∅ → (((limPt‘𝐽)‘𝑎) ⊆ 𝑎 ↔ ∅ ⊆ 𝑎))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((limPt‘𝐽)‘𝑎) = ∅ → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
2120adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
221cldlp 23179 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2421, 23mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
254, 24sylanl1 679 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
2625adantllr 718 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
27 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) = ∅)
281cldss 23058 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Clsd‘𝐽) → 𝑎𝑋)
291nlpineqsn 37374 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}))
30 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → (𝑛𝑎) = {𝑝})
3130reximi 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∃𝑛𝐽 (𝑛𝑎) = {𝑝})
3231ralimi 3089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝})
33 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ V
34 ineq1 4234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑓𝑝) → (𝑛𝑎) = ((𝑓𝑝) ∩ 𝑎))
3534eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = (𝑓𝑝) → ((𝑛𝑎) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
3633, 35ac6s 10553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝} → ∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
37 fvineqsnf1 37376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑓:𝑎1-1𝐽)
38 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})
3937, 38jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4039eximi 1833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4129, 32, 36, 404syl 19 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4228, 41syl3an2 1164 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
434, 42syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
44433adant1r 1177 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
45 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → 𝑓:𝑎1-1𝐽)
46 vsnid 4685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑝 ∈ {𝑝}
47 eleq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → (𝑝 ∈ ((𝑓𝑝) ∩ 𝑎) ↔ 𝑝 ∈ {𝑝}))
4846, 47mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ ((𝑓𝑝) ∩ 𝑎))
4948elin1d 4227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ (𝑓𝑝))
5049ralimi 3089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → ∀𝑝𝑎 𝑝 ∈ (𝑓𝑝))
51 ralssiun 37373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 𝑝 ∈ (𝑓𝑝) → 𝑎 𝑝𝑎 (𝑓𝑝))
5250, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑎 𝑝𝑎 (𝑓𝑝))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 𝑝𝑎 (𝑓𝑝))
54 f1fn 6818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:𝑎1-1𝐽𝑓 Fn 𝑎)
55 fniunfv 7284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓 Fn 𝑎 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:𝑎1-1𝐽 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5853, 57sseqtrd 4049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 ran 𝑓)
591cldopn 23060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ (Clsd‘𝐽) → (𝑋𝑎) ∈ 𝐽)
6059ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (𝑋𝑎) ∈ 𝐽)
6160anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → ((𝑋𝑎) ∈ 𝐽𝑎 ran 𝑓))
6261ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))
6328ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → 𝑎𝑋)
6463anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)))
65 unisng 4949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ∈ 𝐽 {(𝑋𝑎)} = (𝑋𝑎))
6665eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) = {(𝑋𝑎)})
67 eqimss 4067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) = {(𝑋𝑎)} → (𝑋𝑎) ⊆ {(𝑋𝑎)})
68 ssun4 4204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ ( ran 𝑓 {(𝑋𝑎)}))
69 uniun 4954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (ran 𝑓 ∪ {(𝑋𝑎)}) = ( ran 𝑓 {(𝑋𝑎)})
7068, 69sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
7166, 67, 703syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
72 ssun3 4203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑎 ran 𝑓𝑎 ⊆ ( ran 𝑓 {(𝑋𝑎)}))
7372, 69sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ran 𝑓𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}))
74 uncom 4181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎 ∪ (𝑋𝑎)) = ((𝑋𝑎) ∪ 𝑎)
75 undif1 4499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑋𝑎) ∪ 𝑎) = (𝑋𝑎)
7674, 75eqtri 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎 ∪ (𝑋𝑎)) = (𝑋𝑎)
77 ssequn2 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑋 ↔ (𝑋𝑎) = 𝑋)
7877biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎𝑋 → (𝑋𝑎) = 𝑋)
7976, 78eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑎𝑋 → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
81 unss12 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})))
82 unidm 4180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})) = (ran 𝑓 ∪ {(𝑋𝑎)})
8381, 82sseqtrdi 4059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8580, 84eqsstrrd 4048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8673, 85sylanr1 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8771, 86sylanr2 682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
89 f1f 6817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎1-1𝐽𝑓:𝑎𝐽)
90 frn 6754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎𝐽 → ran 𝑓𝐽)
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓:𝑎1-1𝐽 → ran 𝑓𝐽)
921topopn 22933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋𝐽)
931difopn 23063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝐽𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9492, 93sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9594snssd 4834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → {(𝑋𝑎)} ⊆ 𝐽)
96 unss12 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ (𝐽𝐽))
97 unidm 4180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽𝐽) = 𝐽
9896, 97sseqtrdi 4059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
9991, 95, 98syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
100 uniss 4939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
101100, 1sseqtrrdi 4060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
10299, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
10488, 103eqssd 4026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10564, 104syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10662, 105syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10758, 106sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
108107ancom1s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
109108ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
11045, 109mpand 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
111110impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
112111adantlrr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
1134, 112sylanl1 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
114 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑓 ∈ V
115 f1f1orn 6873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:𝑎1-1𝐽𝑓:𝑎1-1-onto→ran 𝑓)
116 f1oen3g 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 ∈ V ∧ 𝑓:𝑎1-1-onto→ran 𝑓) → 𝑎 ≈ ran 𝑓)
117114, 115, 116sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓:𝑎1-1𝐽𝑎 ≈ ran 𝑓)
118 enen1 9183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω ↔ ran 𝑓 ≈ ω))
119 endom 9039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (ran 𝑓 ≈ ω → ran 𝑓 ≼ ω)
120 snfi 9109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 {(𝑋𝑎)} ∈ Fin
121 isfinite 9721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({(𝑋𝑎)} ∈ Fin ↔ {(𝑋𝑎)} ≺ ω)
122120, 121mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 {(𝑋𝑎)} ≺ ω
123 sdomdom 9040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({(𝑋𝑎)} ≺ ω → {(𝑋𝑎)} ≼ ω)
124122, 123ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {(𝑋𝑎)} ≼ ω
125 unctb 10273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ran 𝑓 ≼ ω ∧ {(𝑋𝑎)} ≼ ω) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
126119, 124, 125sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (ran 𝑓 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
127118, 126biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
128117, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:𝑎1-1𝐽 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
129128impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 ≈ ω ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
130129adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
131130ad2ant2lr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
13299ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
133132adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
134133adantlrr 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
1354, 134sylanl1 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
136 elpw2g 5351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽))
137136biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
138137ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
139135, 138mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽)
1403simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
141 unieq 4942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑠 = 𝑧 𝑠 = 𝑧)
142141eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = 𝑧 → (𝑋 = 𝑠𝑋 = 𝑧))
143142cbvrexvw 3244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
144143imbi2i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
145144ralbii 3099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
146140, 145sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠))
147 unieq 4942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}))
148147eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑋 = 𝑦𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
149 breq1 5169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑦 ≼ ω ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
150148, 149anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → ((𝑋 = 𝑦𝑦 ≼ ω) ↔ (𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)))
151 pweq 4636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝒫 𝑦 = 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
152151ineq1d 4240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝒫 𝑦 ∩ Fin) = (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin))
153152rexeqdv 3335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
154150, 153imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
155154rspccv 3632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
156146, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
157156ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
158139, 157mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
159113, 131, 158mp2and 698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)
160 df-rex 3077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠))
161 elinel1 4224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
162 velpw 4627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ↔ 𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
163 ssdif 4167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}))
164 difun2 4504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}) = (ran 𝑓 ∖ {(𝑋𝑎)})
165163, 164sseqtrdi 4059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ (ran 𝑓 ∖ {(𝑋𝑎)}))
166165difss2d 4162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
167162, 166sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
168161, 167syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
169168a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓))
170 sseq2 4035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 = 𝑠 → (𝑎𝑋𝑎 𝑠))
171 uniexg 7775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐽 ∈ Top → 𝐽 ∈ V)
1721, 171eqeltrid 2848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋 ∈ V)
173 difexg 5347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑋 ∈ V → (𝑋𝑎) ∈ V)
174 unisng 4949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝑎) ∈ V → {(𝑋𝑎)} = (𝑋𝑎))
175172, 173, 1743syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽 ∈ Top → {(𝑋𝑎)} = (𝑋𝑎))
176175ineq2d 4241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = (𝑎 ∩ (𝑋𝑎)))
177 disjdif 4495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ∩ (𝑋𝑎)) = ∅
178176, 177eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = ∅)
179 inunissunidif 37341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎 {(𝑋𝑎)}) = ∅ → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
180178, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐽 ∈ Top → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
181170, 180sylan9bbr 510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
182181biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
183182impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑋 = 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
184169, 183anim12d 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
1854, 28, 184syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
186185adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
187186anim2d 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)})))))
188117ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎 ≈ ran 𝑓)
189 fvineqsneq 37378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓 Fn 𝑎 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
19054, 189sylanl1 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
191 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑠 ∈ V
192 difss 4159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠
193 ssdomg 9060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∈ V → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠 → (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠))
194191, 192, 193mp2 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠
195190, 194eqbrtrrdi 5206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → ran 𝑓𝑠)
196 endomtr 9072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ≈ ran 𝑓 ∧ ran 𝑓𝑠) → 𝑎𝑠)
197188, 195, 196syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎𝑠)
198187, 197syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → 𝑎𝑠))
199198expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑎𝑠))
200 elinel2 4225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ Fin)
201200adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin)
202201a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin))
203199, 202jcad 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → (𝑎𝑠𝑠 ∈ Fin)))
204203eximdv 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
205160, 204biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
206159, 205mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
207206ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
208207exlimdv 1932 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
209208anass1rs 654 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
2102093adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
21144, 210mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
21217, 26, 27, 211syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
213212anasss 466 . . . . . . . . . . . . . . . . . . 19 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
214 isfinite 9721 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ Fin ↔ 𝑠 ≺ ω)
215 domsdomtr 9178 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑠𝑠 ≺ ω) → 𝑎 ≺ ω)
216214, 215sylan2b 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
217216exlimiv 1929 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
218 sdomnen 9041 . . . . . . . . . . . . . . . . . . 19 (𝑎 ≺ ω → ¬ 𝑎 ≈ ω)
219213, 217, 2183syl 18 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ¬ 𝑎 ≈ ω)
22016, 219pm2.65da 816 . . . . . . . . . . . . . . . . 17 ((𝐽𝐶𝑎 ≈ ω) → ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
221 imnan 399 . . . . . . . . . . . . . . . . 17 ((𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅) ↔ ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
222220, 221sylibr 234 . . . . . . . . . . . . . . . 16 ((𝐽𝐶𝑎 ≈ ω) → (𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅))
223222imp 406 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ¬ ((limPt‘𝐽)‘𝑎) = ∅)
224 neq0 4375 . . . . . . . . . . . . . . 15 (¬ ((limPt‘𝐽)‘𝑎) = ∅ ↔ ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
225223, 224sylib 218 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2261lpss 23171 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
2274, 226sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝐽𝐶𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
228227adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
229228sseld 4007 . . . . . . . . . . . . . . . . 17 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠𝑋))
230229ancrd 551 . . . . . . . . . . . . . . . 16 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → (𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
231230eximdv 1916 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
232 df-rex 3077 . . . . . . . . . . . . . . 15 (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) ↔ ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
233231, 232imbitrrdi 252 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
234225, 233mpd 15 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
23515, 234sylan2 592 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2361lpss3 23173 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑏𝑋𝑎𝑏) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2372363expb 1120 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2384, 237sylan 579 . . . . . . . . . . . . . . 15 ((𝐽𝐶 ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
239238adantlr 714 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
240239sseld 4007 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
241240reximdv 3176 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
242235, 241mpd 15 . . . . . . . . . . 11 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
243242an42s 660 . . . . . . . . . 10 (((𝐽𝐶𝑏𝑋) ∧ (𝑎𝑏𝑎 ≈ ω)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
244243ex 412 . . . . . . . . 9 ((𝐽𝐶𝑏𝑋) → ((𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
245244exlimdv 1932 . . . . . . . 8 ((𝐽𝐶𝑏𝑋) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
246245adantrr 716 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
24713, 246mpd 15 . . . . . 6 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2487, 247sylan2b 593 . . . . 5 ((𝐽𝐶 ∧ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2495, 248sylan2b 593 . . . 4 ((𝐽𝐶𝑏 ∈ (𝒫 𝑋 ∖ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
250249ralrimiva 3152 . . 3 (𝐽𝐶 → ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
251 simpr 484 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → 𝑧 = 𝑠)
252 fveq2 6920 . . . . . . 7 (𝑦 = 𝑏 → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
253252adantr 480 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
254251, 253eleq12d 2838 . . . . 5 ((𝑦 = 𝑏𝑧 = 𝑠) → (𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
255254cbvrexdva 3246 . . . 4 (𝑦 = 𝑏 → (∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
256255cbvralvw 3243 . . 3 (∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
257250, 256sylibr 234 . 2 (𝐽𝐶 → ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))
258 pibt2.21 . . 3 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
2591, 258pibp21 37381 . 2 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
2604, 257, 259sylanbrc 582 1 (𝐽𝐶𝐽𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  ran crn 5701   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  Topctop 22920  Clsdccld 23045  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-r1 9833  df-rank 9834  df-dju 9970  df-card 10008  df-ac 10185  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator