Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibt2 Structured version   Visualization version   GIF version

Theorem pibt2 35588
Description: Theorem T000002 of pi-base, a countably compact topology is also weakly countably compact. See pibp19 35585 and pibp21 35586 for the definitions of the relevant properties. This proof uses the axiom of choice. (Contributed by ML, 30-Mar-2021.)
Hypotheses
Ref Expression
pibt2.x 𝑋 = 𝐽
pibt2.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
pibt2.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibt2 (𝐽𝐶𝐽𝑊)
Distinct variable groups:   𝑦,𝐽,𝑥,𝑧   𝑦,𝑋,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibt2
Dummy variables 𝑎 𝑏 𝑠 𝑓 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pibt2.x . . . 4 𝑋 = 𝐽
2 pibt2.19 . . . 4 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
31, 2pibp19 35585 . . 3 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
43simplbi 498 . 2 (𝐽𝐶𝐽 ∈ Top)
5 eldif 3897 . . . . 5 (𝑏 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin))
6 velpw 4538 . . . . . . 7 (𝑏 ∈ 𝒫 𝑋𝑏𝑋)
76anbi1i 624 . . . . . 6 ((𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin) ↔ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin))
8 vex 3436 . . . . . . . . . 10 𝑏 ∈ V
9 infinf 10322 . . . . . . . . . 10 (𝑏 ∈ V → (¬ 𝑏 ∈ Fin ↔ ω ≼ 𝑏))
108, 9ax-mp 5 . . . . . . . . 9 𝑏 ∈ Fin ↔ ω ≼ 𝑏)
118infcntss 9088 . . . . . . . . 9 (ω ≼ 𝑏 → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1210, 11sylbi 216 . . . . . . . 8 𝑏 ∈ Fin → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
1312ad2antll 726 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑎(𝑎𝑏𝑎 ≈ ω))
14 sstr 3929 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏𝑋) → 𝑎𝑋)
1514ancoms 459 . . . . . . . . . . . . 13 ((𝑏𝑋𝑎𝑏) → 𝑎𝑋)
16 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → 𝑎 ≈ ω)
17 simpll 764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝐽𝐶𝑎 ≈ ω))
18 0ss 4330 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ∅ ⊆ 𝑎
19 sseq1 3946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((limPt‘𝐽)‘𝑎) = ∅ → (((limPt‘𝐽)‘𝑎) ⊆ 𝑎 ↔ ∅ ⊆ 𝑎))
2018, 19mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((limPt‘𝐽)‘𝑎) = ∅ → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
2120adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑎)
221cldlp 22301 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (𝑎 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑎) ⊆ 𝑎))
2421, 23mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽 ∈ Top ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
254, 24sylanl1 677 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
2625adantllr 716 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → 𝑎 ∈ (Clsd‘𝐽))
27 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ((limPt‘𝐽)‘𝑎) = ∅)
281cldss 22180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Clsd‘𝐽) → 𝑎𝑋)
291nlpineqsn 35579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}))
30 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → (𝑛𝑎) = {𝑝})
3130reximi 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∃𝑛𝐽 (𝑛𝑎) = {𝑝})
3231ralimi 3087 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑝𝑎𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝑎) = {𝑝}) → ∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝})
33 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑎 ∈ V
34 ineq1 4139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = (𝑓𝑝) → (𝑛𝑎) = ((𝑓𝑝) ∩ 𝑎))
3534eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = (𝑓𝑝) → ((𝑛𝑎) = {𝑝} ↔ ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
3633, 35ac6s 10240 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑝𝑎𝑛𝐽 (𝑛𝑎) = {𝑝} → ∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
3729, 32, 363syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
38 fvineqsnf1 35581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑓:𝑎1-1𝐽)
39 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})
4038, 39jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4140eximi 1837 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑓(𝑓:𝑎𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4237, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽 ∈ Top ∧ 𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
4328, 42syl3an2 1163 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
444, 43syl3an1 1162 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
45443adant1r 1176 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}))
46 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → 𝑓:𝑎1-1𝐽)
47 vsnid 4598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑝 ∈ {𝑝}
48 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → (𝑝 ∈ ((𝑓𝑝) ∩ 𝑎) ↔ 𝑝 ∈ {𝑝}))
4947, 48mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ ((𝑓𝑝) ∩ 𝑎))
5049elin1d 4132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑝 ∈ (𝑓𝑝))
5150ralimi 3087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → ∀𝑝𝑎 𝑝 ∈ (𝑓𝑝))
52 ralssiun 35578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑝𝑎 𝑝 ∈ (𝑓𝑝) → 𝑎 𝑝𝑎 (𝑓𝑝))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑎 𝑝𝑎 (𝑓𝑝))
5453adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 𝑝𝑎 (𝑓𝑝))
55 f1fn 6671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓:𝑎1-1𝐽𝑓 Fn 𝑎)
56 fniunfv 7120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑓 Fn 𝑎 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑓:𝑎1-1𝐽 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5857adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑝𝑎 (𝑓𝑝) = ran 𝑓)
5954, 58sseqtrd 3961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑎 ran 𝑓)
601cldopn 22182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ (Clsd‘𝐽) → (𝑋𝑎) ∈ 𝐽)
6160ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (𝑋𝑎) ∈ 𝐽)
6261anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → ((𝑋𝑎) ∈ 𝐽𝑎 ran 𝑓))
6362ancomd 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))
6428ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → 𝑎𝑋)
6564anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)))
66 unisng 4860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ∈ 𝐽 {(𝑋𝑎)} = (𝑋𝑎))
6766eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) = {(𝑋𝑎)})
68 eqimss 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) = {(𝑋𝑎)} → (𝑋𝑎) ⊆ {(𝑋𝑎)})
69 ssun4 4109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ ( ran 𝑓 {(𝑋𝑎)}))
70 uniun 4864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (ran 𝑓 ∪ {(𝑋𝑎)}) = ( ran 𝑓 {(𝑋𝑎)})
7169, 70sseqtrrdi 3972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑋𝑎) ⊆ {(𝑋𝑎)} → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
7267, 68, 713syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑋𝑎) ∈ 𝐽 → (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
73 ssun3 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑎 ran 𝑓𝑎 ⊆ ( ran 𝑓 {(𝑋𝑎)}))
7473, 70sseqtrrdi 3972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ran 𝑓𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}))
75 uncom 4087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎 ∪ (𝑋𝑎)) = ((𝑋𝑎) ∪ 𝑎)
76 undif1 4409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑋𝑎) ∪ 𝑎) = (𝑋𝑎)
7775, 76eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎 ∪ (𝑋𝑎)) = (𝑋𝑎)
78 ssequn2 4117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑋 ↔ (𝑋𝑎) = 𝑋)
7978biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑎𝑋 → (𝑋𝑎) = 𝑋)
8077, 79eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑎𝑋 → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
8180adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) = 𝑋)
82 unss12 4116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})))
83 unidm 4086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ( (ran 𝑓 ∪ {(𝑋𝑎)}) ∪ (ran 𝑓 ∪ {(𝑋𝑎)})) = (ran 𝑓 ∪ {(𝑋𝑎)})
8482, 83sseqtrdi 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)})) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → (𝑎 ∪ (𝑋𝑎)) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
8681, 85eqsstrrd 3960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑎𝑋 ∧ (𝑎 (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8774, 86sylanr1 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8872, 87sylanr2 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
8988adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 (ran 𝑓 ∪ {(𝑋𝑎)}))
90 f1f 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎1-1𝐽𝑓:𝑎𝐽)
91 frn 6607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑓:𝑎𝐽 → ran 𝑓𝐽)
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓:𝑎1-1𝐽 → ran 𝑓𝐽)
931topopn 22055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋𝐽)
941difopn 22185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝐽𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9593, 94sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → (𝑋𝑎) ∈ 𝐽)
9695snssd 4742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) → {(𝑋𝑎)} ⊆ 𝐽)
97 unss12 4116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ (𝐽𝐽))
98 unidm 4086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽𝐽) = 𝐽
9997, 98sseqtrdi 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓𝐽 ∧ {(𝑋𝑎)} ⊆ 𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
10092, 96, 99syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
101 uniss 4847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
102101, 1sseqtrrdi 3972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
103100, 102syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
104103adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝑋)
10589, 104eqssd 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎𝑋 ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽))) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10665, 105syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑎 ran 𝑓 ∧ (𝑋𝑎) ∈ 𝐽)) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10763, 106syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ 𝑎 ran 𝑓) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
10859, 107sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ (𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽))) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
109108ancom1s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
110109ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
11146, 110mpand 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝} → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
112111impr 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
113112adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
1144, 113sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → 𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}))
115 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑓 ∈ V
116 f1f1orn 6727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:𝑎1-1𝐽𝑓:𝑎1-1-onto→ran 𝑓)
117 f1oen3g 8754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 ∈ V ∧ 𝑓:𝑎1-1-onto→ran 𝑓) → 𝑎 ≈ ran 𝑓)
118115, 116, 117sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓:𝑎1-1𝐽𝑎 ≈ ran 𝑓)
119 enen1 8904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω ↔ ran 𝑓 ≈ ω))
120 endom 8767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (ran 𝑓 ≈ ω → ran 𝑓 ≼ ω)
121 snfi 8834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 {(𝑋𝑎)} ∈ Fin
122 isfinite 9410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({(𝑋𝑎)} ∈ Fin ↔ {(𝑋𝑎)} ≺ ω)
123121, 122mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 {(𝑋𝑎)} ≺ ω
124 sdomdom 8768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({(𝑋𝑎)} ≺ ω → {(𝑋𝑎)} ≼ ω)
125123, 124ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 {(𝑋𝑎)} ≼ ω
126 unctb 9961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((ran 𝑓 ≼ ω ∧ {(𝑋𝑎)} ≼ ω) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
127120, 125, 126sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (ran 𝑓 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
128119, 127syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 ≈ ran 𝑓 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
129118, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:𝑎1-1𝐽 → (𝑎 ≈ ω → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
130129impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑎 ≈ ω ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
131130adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
132131ad2ant2lr 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)
133100ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ 𝑓:𝑎1-1𝐽) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
134133adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐽 ∈ Top ∧ 𝑎 ∈ (Clsd‘𝐽)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
135134adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐽 ∈ Top ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
1364, 135sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽)
137 elpw2g 5268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽))
138137biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
139138ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ⊆ 𝐽 → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽))
140136, 139mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽)
1413simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
142 unieq 4850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑠 = 𝑧 𝑠 = 𝑧)
143142eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 = 𝑧 → (𝑋 = 𝑠𝑋 = 𝑧))
144143cbvrexvw 3384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)
145144imbi2i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
146145ralbii 3092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
147141, 146sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐽𝐶 → ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠))
148 unieq 4850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}))
149148eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑋 = 𝑦𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)})))
150 breq1 5077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑦 ≼ ω ↔ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω))
151149, 150anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → ((𝑋 = 𝑦𝑦 ≼ ω) ↔ (𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω)))
152 pweq 4549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → 𝒫 𝑦 = 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
153152ineq1d 4145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝒫 𝑦 ∩ Fin) = (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin))
154153rexeqdv 3349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
155151, 154imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = (ran 𝑓 ∪ {(𝑋𝑎)}) → (((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) ↔ ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
156155rspccv 3558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑠 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑠) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
157147, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐽𝐶 → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
158157ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((ran 𝑓 ∪ {(𝑋𝑎)}) ∈ 𝒫 𝐽 → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)))
159140, 158mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑋 = (ran 𝑓 ∪ {(𝑋𝑎)}) ∧ (ran 𝑓 ∪ {(𝑋𝑎)}) ≼ ω) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠))
160114, 132, 159mp2and 696 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠)
161 df-rex 3070 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 ↔ ∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠))
162 elinel1 4129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}))
163 velpw 4538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ↔ 𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}))
164 ssdif 4074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}))
165 difun2 4414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((ran 𝑓 ∪ {(𝑋𝑎)}) ∖ {(𝑋𝑎)}) = (ran 𝑓 ∖ {(𝑋𝑎)})
166164, 165sseqtrdi 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ (ran 𝑓 ∖ {(𝑋𝑎)}))
167166difss2d 4069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ⊆ (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
168163, 167sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑠 ∈ 𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
169162, 168syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓)
170169a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → (𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓))
171 sseq2 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑋 = 𝑠 → (𝑎𝑋𝑎 𝑠))
172 uniexg 7593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐽 ∈ Top → 𝐽 ∈ V)
1731, 172eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐽 ∈ Top → 𝑋 ∈ V)
174 difexg 5251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑋 ∈ V → (𝑋𝑎) ∈ V)
175 unisng 4860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑋𝑎) ∈ V → {(𝑋𝑎)} = (𝑋𝑎))
176173, 174, 1753syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐽 ∈ Top → {(𝑋𝑎)} = (𝑋𝑎))
177176ineq2d 4146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = (𝑎 ∩ (𝑋𝑎)))
178 disjdif 4405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑎 ∩ (𝑋𝑎)) = ∅
179177, 178eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐽 ∈ Top → (𝑎 {(𝑋𝑎)}) = ∅)
180 inunissunidif 35546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑎 {(𝑋𝑎)}) = ∅ → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
181179, 180syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐽 ∈ Top → (𝑎 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
182171, 181sylan9bbr 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
183182biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐽 ∈ Top ∧ 𝑋 = 𝑠) → (𝑎𝑋𝑎 (𝑠 ∖ {(𝑋𝑎)})))
184183impancom 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐽 ∈ Top ∧ 𝑎𝑋) → (𝑋 = 𝑠𝑎 (𝑠 ∖ {(𝑋𝑎)})))
185170, 184anim12d 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
1864, 28, 185syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐽𝐶𝑎 ∈ (Clsd‘𝐽)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
187186adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))))
188187anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)})))))
189118ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎 ≈ ran 𝑓)
190 fvineqsneq 35583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓 Fn 𝑎 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
19155, 190sylanl1 677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → (𝑠 ∖ {(𝑋𝑎)}) = ran 𝑓)
192 vex 3436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑠 ∈ V
193 difss 4066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠
194 ssdomg 8786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑠 ∈ V → ((𝑠 ∖ {(𝑋𝑎)}) ⊆ 𝑠 → (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠))
195192, 193, 194mp2 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑠 ∖ {(𝑋𝑎)}) ≼ 𝑠
196191, 195eqbrtrrdi 5114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → ran 𝑓𝑠)
197 endomtr 8798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ≈ ran 𝑓 ∧ ran 𝑓𝑠) → 𝑎𝑠)
198189, 196, 197syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ ((𝑠 ∖ {(𝑋𝑎)}) ⊆ ran 𝑓𝑎 (𝑠 ∖ {(𝑋𝑎)}))) → 𝑎𝑠)
199188, 198syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) ∧ (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠)) → 𝑎𝑠))
200199expdimp 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑎𝑠))
201 elinel2 4130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) → 𝑠 ∈ Fin)
202201adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin)
203202a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → 𝑠 ∈ Fin))
204200, 203jcad 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ((𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → (𝑎𝑠𝑠 ∈ Fin)))
205204eximdv 1920 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠(𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin) ∧ 𝑋 = 𝑠) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
206161, 205syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → (∃𝑠 ∈ (𝒫 (ran 𝑓 ∪ {(𝑋𝑎)}) ∩ Fin)𝑋 = 𝑠 → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
207160, 206mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) ∧ (𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝})) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
208207ex 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → ((𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
209208exlimdv 1936 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝐶 ∧ (𝑎 ∈ (Clsd‘𝐽) ∧ 𝑎 ≈ ω)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
210209anass1rs 652 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽)) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
2112103adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → (∃𝑓(𝑓:𝑎1-1𝐽 ∧ ∀𝑝𝑎 ((𝑓𝑝) ∩ 𝑎) = {𝑝}) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin)))
21245, 211mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎 ∈ (Clsd‘𝐽) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
21317, 26, 27, 212syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) ∧ ((limPt‘𝐽)‘𝑎) = ∅) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
214213anasss 467 . . . . . . . . . . . . . . . . . . 19 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ∃𝑠(𝑎𝑠𝑠 ∈ Fin))
215 isfinite 9410 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ Fin ↔ 𝑠 ≺ ω)
216 domsdomtr 8899 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑠𝑠 ≺ ω) → 𝑎 ≺ ω)
217215, 216sylan2b 594 . . . . . . . . . . . . . . . . . . . 20 ((𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
218217exlimiv 1933 . . . . . . . . . . . . . . . . . . 19 (∃𝑠(𝑎𝑠𝑠 ∈ Fin) → 𝑎 ≺ ω)
219 sdomnen 8769 . . . . . . . . . . . . . . . . . . 19 (𝑎 ≺ ω → ¬ 𝑎 ≈ ω)
220214, 218, 2193syl 18 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅)) → ¬ 𝑎 ≈ ω)
22116, 220pm2.65da 814 . . . . . . . . . . . . . . . . 17 ((𝐽𝐶𝑎 ≈ ω) → ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
222 imnan 400 . . . . . . . . . . . . . . . . 17 ((𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅) ↔ ¬ (𝑎𝑋 ∧ ((limPt‘𝐽)‘𝑎) = ∅))
223221, 222sylibr 233 . . . . . . . . . . . . . . . 16 ((𝐽𝐶𝑎 ≈ ω) → (𝑎𝑋 → ¬ ((limPt‘𝐽)‘𝑎) = ∅))
224223imp 407 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ¬ ((limPt‘𝐽)‘𝑎) = ∅)
225 neq0 4279 . . . . . . . . . . . . . . 15 (¬ ((limPt‘𝐽)‘𝑎) = ∅ ↔ ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
226224, 225sylib 217 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2271lpss 22293 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ Top ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
2284, 227sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝐽𝐶𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
229228adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ((limPt‘𝐽)‘𝑎) ⊆ 𝑋)
230229sseld 3920 . . . . . . . . . . . . . . . . 17 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠𝑋))
231230ancrd 552 . . . . . . . . . . . . . . . 16 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → (𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
232231eximdv 1920 . . . . . . . . . . . . . . 15 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎))))
233 df-rex 3070 . . . . . . . . . . . . . . 15 (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) ↔ ∃𝑠(𝑠𝑋𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
234232, 233syl6ibr 251 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → (∃𝑠 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎)))
235226, 234mpd 15 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ 𝑎𝑋) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
23615, 235sylan2 593 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎))
2371lpss3 22295 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑏𝑋𝑎𝑏) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2382373expb 1119 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
2394, 238sylan 580 . . . . . . . . . . . . . . 15 ((𝐽𝐶 ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
240239adantlr 712 . . . . . . . . . . . . . 14 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ((limPt‘𝐽)‘𝑎) ⊆ ((limPt‘𝐽)‘𝑏))
241240sseld 3920 . . . . . . . . . . . . 13 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (𝑠 ∈ ((limPt‘𝐽)‘𝑎) → 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
242241reximdv 3202 . . . . . . . . . . . 12 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → (∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑎) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
243236, 242mpd 15 . . . . . . . . . . 11 (((𝐽𝐶𝑎 ≈ ω) ∧ (𝑏𝑋𝑎𝑏)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
244243an42s 658 . . . . . . . . . 10 (((𝐽𝐶𝑏𝑋) ∧ (𝑎𝑏𝑎 ≈ ω)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
245244ex 413 . . . . . . . . 9 ((𝐽𝐶𝑏𝑋) → ((𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
246245exlimdv 1936 . . . . . . . 8 ((𝐽𝐶𝑏𝑋) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
247246adantrr 714 . . . . . . 7 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → (∃𝑎(𝑎𝑏𝑎 ≈ ω) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
24813, 247mpd 15 . . . . . 6 ((𝐽𝐶 ∧ (𝑏𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2497, 248sylan2b 594 . . . . 5 ((𝐽𝐶 ∧ (𝑏 ∈ 𝒫 𝑋 ∧ ¬ 𝑏 ∈ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
2505, 249sylan2b 594 . . . 4 ((𝐽𝐶𝑏 ∈ (𝒫 𝑋 ∖ Fin)) → ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
251250ralrimiva 3103 . . 3 (𝐽𝐶 → ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
252 simpr 485 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → 𝑧 = 𝑠)
253 fveq2 6774 . . . . . . 7 (𝑦 = 𝑏 → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
254253adantr 481 . . . . . 6 ((𝑦 = 𝑏𝑧 = 𝑠) → ((limPt‘𝐽)‘𝑦) = ((limPt‘𝐽)‘𝑏))
255252, 254eleq12d 2833 . . . . 5 ((𝑦 = 𝑏𝑧 = 𝑠) → (𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
256255cbvrexdva 3395 . . . 4 (𝑦 = 𝑏 → (∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏)))
257256cbvralvw 3383 . . 3 (∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦) ↔ ∀𝑏 ∈ (𝒫 𝑋 ∖ Fin)∃𝑠𝑋 𝑠 ∈ ((limPt‘𝐽)‘𝑏))
258251, 257sylibr 233 . 2 (𝐽𝐶 → ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦))
259 pibt2.21 . . 3 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
2601, 259pibp21 35586 . 2 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
2614, 258, 260sylanbrc 583 1 (𝐽𝐶𝐽𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   ciun 4924   class class class wbr 5074  ran crn 5590   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  ωcom 7712  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  Topctop 22042  Clsdccld 22167  limPtclp 22285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-r1 9522  df-rank 9523  df-dju 9659  df-card 9697  df-ac 9872  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator