Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgellim | Structured version Visualization version GIF version |
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.) |
Ref | Expression |
---|---|
rdgellim | ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶)) | |
2 | 1 | eleq2d 2824 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶))) |
3 | 2 | rspcev 3552 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) |
4 | 3 | ex 412 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))) |
5 | eliun 4925 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) | |
6 | 4, 5 | syl6ibr 251 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
8 | rdglim2a 8235 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦)) | |
9 | 8 | eleq2d 2824 | . . 3 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
10 | 9 | adantr 480 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
11 | 7, 10 | sylibrd 258 | 1 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∪ ciun 4921 Oncon0 6251 Lim wlim 6252 ‘cfv 6418 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: rdglimss 35475 exrecfnlem 35477 |
Copyright terms: Public domain | W3C validator |