Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgellim | Structured version Visualization version GIF version |
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.) |
Ref | Expression |
---|---|
rdgellim | ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶)) | |
2 | 1 | eleq2d 2824 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶))) |
3 | 2 | rspcev 3561 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) |
4 | 3 | ex 413 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))) |
5 | eliun 4928 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) | |
6 | 4, 5 | syl6ibr 251 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
7 | 6 | adantl 482 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
8 | rdglim2a 8264 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦)) | |
9 | 8 | eleq2d 2824 | . . 3 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
10 | 9 | adantr 481 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
11 | 7, 10 | sylibrd 258 | 1 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∪ ciun 4924 Oncon0 6266 Lim wlim 6267 ‘cfv 6433 reccrdg 8240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 |
This theorem is referenced by: rdglimss 35548 exrecfnlem 35550 |
Copyright terms: Public domain | W3C validator |