| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgellim | Structured version Visualization version GIF version | ||
| Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.) |
| Ref | Expression |
|---|---|
| rdgellim | ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶)) | |
| 2 | 1 | eleq2d 2815 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶))) |
| 3 | 2 | rspcev 3591 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) |
| 4 | 3 | ex 412 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))) |
| 5 | eliun 4962 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) | |
| 6 | 4, 5 | imbitrrdi 252 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
| 8 | rdglim2a 8404 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦)) | |
| 9 | 8 | eleq2d 2815 | . . 3 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
| 10 | 9 | adantr 480 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
| 11 | 7, 10 | sylibrd 259 | 1 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∪ ciun 4958 Oncon0 6335 Lim wlim 6336 ‘cfv 6514 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: rdglimss 37372 exrecfnlem 37374 |
| Copyright terms: Public domain | W3C validator |