![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgellim | Structured version Visualization version GIF version |
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.) |
Ref | Expression |
---|---|
rdgellim | ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶)) | |
2 | 1 | eleq2d 2811 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶))) |
3 | 2 | rspcev 3601 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) |
4 | 3 | ex 411 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))) |
5 | eliun 4995 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) | |
6 | 4, 5 | imbitrrdi 251 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
7 | 6 | adantl 480 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
8 | rdglim2a 8452 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦)) | |
9 | 8 | eleq2d 2811 | . . 3 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
10 | 9 | adantr 479 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
11 | 7, 10 | sylibrd 258 | 1 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ∪ ciun 4991 Oncon0 6364 Lim wlim 6365 ‘cfv 6543 reccrdg 8428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 |
This theorem is referenced by: rdglimss 36913 exrecfnlem 36915 |
Copyright terms: Public domain | W3C validator |