Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgellim Structured version   Visualization version   GIF version

Theorem rdgellim 37371
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.)
Assertion
Ref Expression
rdgellim (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgellim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . . 7 (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶))
21eleq2d 2815 . . . . . 6 (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)))
32rspcev 3591 . . . . 5 ((𝐶𝐵𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
43ex 412 . . . 4 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)))
5 eliun 4962 . . . 4 (𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
64, 5imbitrrdi 252 . . 3 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
76adantl 481 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
8 rdglim2a 8404 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦))
98eleq2d 2815 . . 3 ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
109adantr 480 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
117, 10sylibrd 259 1 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   ciun 4958  Oncon0 6335  Lim wlim 6336  cfv 6514  reccrdg 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  rdglimss  37372  exrecfnlem  37374
  Copyright terms: Public domain W3C validator