![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rdgellim | Structured version Visualization version GIF version |
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.) |
Ref | Expression |
---|---|
rdgellim | ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶)) | |
2 | 1 | eleq2d 2820 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶))) |
3 | 2 | rspcev 3612 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) |
4 | 3 | ex 414 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))) |
5 | eliun 5000 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦 ∈ 𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)) | |
6 | 4, 5 | syl6ibr 252 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
7 | 6 | adantl 483 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
8 | rdglim2a 8428 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦)) | |
9 | 8 | eleq2d 2820 | . . 3 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
10 | 9 | adantr 482 | . 2 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 ∈ ∪ 𝑦 ∈ 𝐵 (rec(𝐹, 𝐴)‘𝑦))) |
11 | 7, 10 | sylibrd 259 | 1 ⊢ (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∪ ciun 4996 Oncon0 6361 Lim wlim 6362 ‘cfv 6540 reccrdg 8404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 |
This theorem is referenced by: rdglimss 36196 exrecfnlem 36198 |
Copyright terms: Public domain | W3C validator |