Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgellim Structured version   Visualization version   GIF version

Theorem rdgellim 34673
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.)
Assertion
Ref Expression
rdgellim (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgellim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6656 . . . . . . 7 (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶))
21eleq2d 2898 . . . . . 6 (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)))
32rspcev 3615 . . . . 5 ((𝐶𝐵𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
43ex 415 . . . 4 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)))
5 eliun 4909 . . . 4 (𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
64, 5syl6ibr 254 . . 3 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
76adantl 484 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
8 rdglim2a 8055 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦))
98eleq2d 2898 . . 3 ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
109adantr 483 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
117, 10sylibrd 261 1 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139   ciun 4905  Oncon0 6177  Lim wlim 6178  cfv 6341  reccrdg 8031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-wrecs 7933  df-recs 7994  df-rdg 8032
This theorem is referenced by:  rdglimss  34674  exrecfnlem  34676
  Copyright terms: Public domain W3C validator