MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni2 Structured version   Visualization version   GIF version

Theorem iotauni2 6427
Description: Version of iotauni 6433 using df-iota 6410 instead of dfiota2 6411. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotauni2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotauni2
StepHypRef Expression
1 iotaval2 6426 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4855 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 unisnv 4867 . . . 4 {𝑦} = 𝑦
42, 3eqtr2di 2793 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
51, 4eqtrd 2776 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
65exlimiv 1931 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1779  {cab 2713  {csn 4565   cuni 4844  cio 6408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-un 3897  df-in 3899  df-ss 3909  df-sn 4566  df-pr 4568  df-uni 4845  df-iota 6410
This theorem is referenced by:  iotassuni  6430
  Copyright terms: Public domain W3C validator