![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version |
Description: Version of iotauni 6548 using df-iota 6525 instead of dfiota2 6526. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6541 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | unieq 4942 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
3 | unisnv 4951 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
4 | 2, 3 | eqtr2di 2797 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
5 | 1, 4 | eqtrd 2780 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
6 | 5 | exlimiv 1929 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 {cab 2717 {csn 4648 ∪ cuni 4931 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iotassuni 6545 |
Copyright terms: Public domain | W3C validator |