| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version | ||
| Description: Version of iotauni 6517 using df-iota 6495 instead of dfiota2 6496. (Contributed by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6510 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | unieq 4900 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
| 3 | unisnv 4909 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
| 4 | 2, 3 | eqtr2di 2786 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
| 5 | 1, 4 | eqtrd 2769 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| 6 | 5 | exlimiv 1929 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 {cab 2712 {csn 4608 ∪ cuni 4889 ℩cio 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-ss 3950 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 |
| This theorem is referenced by: iotassuni 6514 |
| Copyright terms: Public domain | W3C validator |