MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni2 Structured version   Visualization version   GIF version

Theorem iotauni2 6508
Description: Version of iotauni 6514 using df-iota 6491 instead of dfiota2 6492. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotauni2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotauni2
StepHypRef Expression
1 iotaval2 6507 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4917 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 unisnv 4929 . . . 4 {𝑦} = 𝑦
42, 3eqtr2di 2790 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
51, 4eqtrd 2773 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
65exlimiv 1934 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wex 1782  {cab 2710  {csn 4626   cuni 4906  cio 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3951  df-in 3953  df-ss 3963  df-sn 4627  df-pr 4629  df-uni 4907  df-iota 6491
This theorem is referenced by:  iotassuni  6511
  Copyright terms: Public domain W3C validator