Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version |
Description: Version of iotauni 6433 using df-iota 6410 instead of dfiota2 6411. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6426 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | unieq 4855 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
3 | unisnv 4867 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
4 | 2, 3 | eqtr2di 2793 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
5 | 1, 4 | eqtrd 2776 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
6 | 5 | exlimiv 1931 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1779 {cab 2713 {csn 4565 ∪ cuni 4844 ℩cio 6408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 df-uni 4845 df-iota 6410 |
This theorem is referenced by: iotassuni 6430 |
Copyright terms: Public domain | W3C validator |