MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni2 Structured version   Visualization version   GIF version

Theorem iotauni2 6458
Description: Version of iotauni 6463 using df-iota 6442 instead of dfiota2 6443. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotauni2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotauni2
StepHypRef Expression
1 iotaval2 6457 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4872 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 unisnv 4881 . . . 4 {𝑦} = 𝑦
42, 3eqtr2di 2781 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
51, 4eqtrd 2764 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
65exlimiv 1930 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  {cab 2707  {csn 4579   cuni 4861  cio 6440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922  df-sn 4580  df-pr 4582  df-uni 4862  df-iota 6442
This theorem is referenced by:  iotassuni  6461
  Copyright terms: Public domain W3C validator