![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version |
Description: Version of iotauni 6514 using df-iota 6491 instead of dfiota2 6492. (Contributed by SN, 6-Nov-2024.) |
Ref | Expression |
---|---|
iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval2 6507 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
2 | unieq 4917 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
3 | unisnv 4929 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
4 | 2, 3 | eqtr2di 2790 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
5 | 1, 4 | eqtrd 2773 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
6 | 5 | exlimiv 1934 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∃wex 1782 {cab 2710 {csn 4626 ∪ cuni 4906 ℩cio 6489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3951 df-in 3953 df-ss 3963 df-sn 4627 df-pr 4629 df-uni 4907 df-iota 6491 |
This theorem is referenced by: iotassuni 6511 |
Copyright terms: Public domain | W3C validator |