| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version | ||
| Description: Version of iotauni 6458 using df-iota 6437 instead of dfiota2 6438. (Contributed by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6452 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | unieq 4870 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
| 3 | unisnv 4879 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
| 4 | 2, 3 | eqtr2di 2783 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
| 5 | 1, 4 | eqtrd 2766 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| 6 | 5 | exlimiv 1931 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 {cab 2709 {csn 4576 ∪ cuni 4859 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: iotassuni 6456 |
| Copyright terms: Public domain | W3C validator |