| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotauni2 | Structured version Visualization version GIF version | ||
| Description: Version of iotauni 6463 using df-iota 6442 instead of dfiota2 6443. (Contributed by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotauni2 | ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 6457 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | |
| 2 | unieq 4869 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) | |
| 3 | unisnv 4878 | . . . 4 ⊢ ∪ {𝑦} = 𝑦 | |
| 4 | 2, 3 | eqtr2di 2785 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → 𝑦 = ∪ {𝑥 ∣ 𝜑}) |
| 5 | 1, 4 | eqtrd 2768 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| 6 | 5 | exlimiv 1931 | 1 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 {cab 2711 {csn 4575 ∪ cuni 4858 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: iotassuni 6461 |
| Copyright terms: Public domain | W3C validator |