MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotauni2 Structured version   Visualization version   GIF version

Theorem iotauni2 6532
Description: Version of iotauni 6538 using df-iota 6516 instead of dfiota2 6517. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotauni2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem iotauni2
StepHypRef Expression
1 iotaval2 6531 . . 3 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
2 unieq 4923 . . . 4 ({𝑥𝜑} = {𝑦} → {𝑥𝜑} = {𝑦})
3 unisnv 4932 . . . 4 {𝑦} = 𝑦
42, 3eqtr2di 2792 . . 3 ({𝑥𝜑} = {𝑦} → 𝑦 = {𝑥𝜑})
51, 4eqtrd 2775 . 2 ({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
65exlimiv 1928 1 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1776  {cab 2712  {csn 4631   cuni 4912  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516
This theorem is referenced by:  iotassuni  6535
  Copyright terms: Public domain W3C validator