MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuni Structured version   Visualization version   GIF version

Theorem iotassuni 6412
Description: The class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotassuni (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuni
StepHypRef Expression
1 iotauni 6408 . . 3 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 3977 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul 6411 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
5 0ss 4330 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 3975 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  ∃!weu 2568  {cab 2715  wss 3887  c0 4256   cuni 4839  cio 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391
This theorem is referenced by:  bj-nuliotaALT  35229
  Copyright terms: Public domain W3C validator