MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuni Structured version   Visualization version   GIF version

Theorem iotassuni 6486
Description: The class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotassuni (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotauni2 6483 . . 3 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4008 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul2 6484 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
5 0ss 4366 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 3994 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  {cab 2708  wss 3917  c0 4299  {csn 4592   cuni 4874  cio 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875  df-iota 6467
This theorem is referenced by:  bj-nuliotaALT  37053
  Copyright terms: Public domain W3C validator