| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotassuni | Structured version Visualization version GIF version | ||
| Description: The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotassuni | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni2 6480 | . . 3 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | eqimss 4005 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 4 | iotanul2 6481 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 5 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
| 6 | 4, 5 | eqsstrdi 3991 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∃wex 1779 {cab 2707 ⊆ wss 3914 ∅c0 4296 {csn 4589 ∪ cuni 4871 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: bj-nuliotaALT 37046 |
| Copyright terms: Public domain | W3C validator |