MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuni Structured version   Visualization version   GIF version

Theorem iotassuni 6535
Description: The class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2139, ax-11 2155, ax-12 2175. (Revised by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotassuni (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotauni2 6532 . . 3 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4054 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul2 6533 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
5 0ss 4406 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 4050 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wex 1776  {cab 2712  wss 3963  c0 4339  {csn 4631   cuni 4912  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516
This theorem is referenced by:  bj-nuliotaALT  37041
  Copyright terms: Public domain W3C validator