MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotassuni Structured version   Visualization version   GIF version

Theorem iotassuni 6545
Description: The class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 6-Nov-2024.)
Assertion
Ref Expression
iotassuni (℩𝑥𝜑) ⊆ {𝑥𝜑}

Proof of Theorem iotassuni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iotauni2 6542 . . 3 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
2 eqimss 4067 . . 3 ((℩𝑥𝜑) = {𝑥𝜑} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
31, 2syl 17 . 2 (∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
4 iotanul2 6543 . . 3 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
5 0ss 4423 . . 3 ∅ ⊆ {𝑥𝜑}
64, 5eqsstrdi 4063 . 2 (¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ {𝑥𝜑})
73, 6pm2.61i 182 1 (℩𝑥𝜑) ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wex 1777  {cab 2717  wss 3976  c0 4352  {csn 4648   cuni 4931  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525
This theorem is referenced by:  bj-nuliotaALT  37024
  Copyright terms: Public domain W3C validator