| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotassuni | Structured version Visualization version GIF version | ||
| Description: The ℩ class is a subset of the union of all elements satisfying 𝜑. (Contributed by Mario Carneiro, 24-Dec-2016.) Remove dependency on ax-10 2146, ax-11 2162, ax-12 2182. (Revised by SN, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| iotassuni | ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni2 6458 | . . 3 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | eqimss 3989 | . . 3 ⊢ ((℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 4 | iotanul2 6459 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | |
| 5 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ ∪ {𝑥 ∣ 𝜑} | |
| 6 | 4, 5 | eqsstrdi 3975 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∃wex 1780 {cab 2711 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∪ cuni 4858 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: bj-nuliotaALT 37123 |
| Copyright terms: Public domain | W3C validator |