MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc Structured version   Visualization version   GIF version

Theorem is1stc 22944
Description: The predicate "is a first-countable topology." This can be described as "every point has a countable local basis" - that is, every point has a countable collection of open sets containing it such that every open set containing the point has an open set from this collection as a subset. (Contributed by Jeff Hankins, 22-Aug-2009.)
Hypothesis
Ref Expression
is1stc.1 𝑋 = 𝐽
Assertion
Ref Expression
is1stc (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐽   𝑥,𝑋
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem is1stc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4919 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 is1stc.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2790 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 pweq 4616 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
5 raleq 3322 . . . . 5 (𝑗 = 𝐽 → (∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))))
65anbi2d 629 . . . 4 (𝑗 = 𝐽 → ((𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
74, 6rexeqbidv 3343 . . 3 (𝑗 = 𝐽 → (∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
83, 7raleqbidv 3342 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
9 df-1stc 22942 . 2 1stω = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))}
108, 9elrab2 3686 1 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cin 3947  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  ωcom 7854  cdom 8936  Topctop 22394  1stωc1stc 22940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-pw 4604  df-uni 4909  df-1stc 22942
This theorem is referenced by:  is1stc2  22945  1stctop  22946
  Copyright terms: Public domain W3C validator