Proof of Theorem is1stc2
| Step | Hyp | Ref
| Expression |
| 1 | | is1stc.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | is1stc 23395 |
. 2
⊢ (𝐽 ∈ 1stω
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 3 | | elin 3947 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧)) |
| 4 | | velpw 4585 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧) |
| 5 | 4 | anbi2i 623 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) |
| 6 | 3, 5 | bitri 275 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) |
| 7 | 6 | anbi2i 623 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥 ∈ 𝑤 ∧ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧))) |
| 8 | | an12 645 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑤 ∧ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 9 | 7, 8 | bitri 275 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 10 | 9 | exbii 1847 |
. . . . . . . . 9
⊢
(∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 11 | | eluni 4890 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ (𝑦
∩ 𝒫 𝑧) ↔
∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧))) |
| 12 | | df-rex 3060 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 13 | 10, 11, 12 | 3bitr4i 303 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ (𝑦
∩ 𝒫 𝑧) ↔
∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) |
| 14 | 13 | imbi2i 336 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 15 | 14 | ralbii 3081 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
| 16 | 15 | anbi2i 623 |
. . . . 5
⊢ ((𝑦 ≼ ω ∧
∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 17 | 16 | rexbii 3082 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝐽(𝑦 ≼ ω ∧
∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 18 | 17 | ralbii 3081 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
| 19 | 18 | anbi2i 623 |
. 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
| 20 | 2, 19 | bitri 275 |
1
⊢ (𝐽 ∈ 1stω
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |