MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc2 Structured version   Visualization version   GIF version

Theorem is1stc2 22293
Description: An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
is1stc.1 𝑋 = 𝐽
Assertion
Ref Expression
is1stc2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑤)   𝑋(𝑦,𝑧,𝑤)

Proof of Theorem is1stc2
StepHypRef Expression
1 is1stc.1 . . 3 𝑋 = 𝐽
21is1stc 22292 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
3 elin 3869 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤𝑦𝑤 ∈ 𝒫 𝑧))
4 velpw 4504 . . . . . . . . . . . . . 14 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
54anbi2i 626 . . . . . . . . . . . . 13 ((𝑤𝑦𝑤 ∈ 𝒫 𝑧) ↔ (𝑤𝑦𝑤𝑧))
63, 5bitri 278 . . . . . . . . . . . 12 (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤𝑦𝑤𝑧))
76anbi2i 626 . . . . . . . . . . 11 ((𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥𝑤 ∧ (𝑤𝑦𝑤𝑧)))
8 an12 645 . . . . . . . . . . 11 ((𝑥𝑤 ∧ (𝑤𝑦𝑤𝑧)) ↔ (𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
97, 8bitri 278 . . . . . . . . . 10 ((𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
109exbii 1855 . . . . . . . . 9 (∃𝑤(𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ ∃𝑤(𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
11 eluni 4808 . . . . . . . . 9 (𝑥 (𝑦 ∩ 𝒫 𝑧) ↔ ∃𝑤(𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)))
12 df-rex 3057 . . . . . . . . 9 (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤(𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
1310, 11, 123bitr4i 306 . . . . . . . 8 (𝑥 (𝑦 ∩ 𝒫 𝑧) ↔ ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))
1413imbi2i 339 . . . . . . 7 ((𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))
1514ralbii 3078 . . . . . 6 (∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))
1615anbi2i 626 . . . . 5 ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1716rexbii 3160 . . . 4 (∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1817ralbii 3078 . . 3 (∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1918anbi2i 626 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
202, 19bitri 278 1 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wral 3051  wrex 3052  cin 3852  wss 3853  𝒫 cpw 4499   cuni 4805   class class class wbr 5039  ωcom 7622  cdom 8602  Topctop 21744  1stωc1stc 22288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-in 3860  df-ss 3870  df-pw 4501  df-uni 4806  df-1stc 22290
This theorem is referenced by:  1stcclb  22295  2ndc1stc  22302  1stcrest  22304  lly1stc  22347  tx1stc  22501  met1stc  23373
  Copyright terms: Public domain W3C validator