MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is1stc2 Structured version   Visualization version   GIF version

Theorem is1stc2 22816
Description: An equivalent way of saying "is a first-countable topology." (Contributed by Jeff Hankins, 22-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
is1stc.1 𝑋 = 𝐽
Assertion
Ref Expression
is1stc2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑤)   𝑋(𝑦,𝑧,𝑤)

Proof of Theorem is1stc2
StepHypRef Expression
1 is1stc.1 . . 3 𝑋 = 𝐽
21is1stc 22815 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
3 elin 3930 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤𝑦𝑤 ∈ 𝒫 𝑧))
4 velpw 4569 . . . . . . . . . . . . . 14 (𝑤 ∈ 𝒫 𝑧𝑤𝑧)
54anbi2i 624 . . . . . . . . . . . . 13 ((𝑤𝑦𝑤 ∈ 𝒫 𝑧) ↔ (𝑤𝑦𝑤𝑧))
63, 5bitri 275 . . . . . . . . . . . 12 (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤𝑦𝑤𝑧))
76anbi2i 624 . . . . . . . . . . 11 ((𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥𝑤 ∧ (𝑤𝑦𝑤𝑧)))
8 an12 644 . . . . . . . . . . 11 ((𝑥𝑤 ∧ (𝑤𝑦𝑤𝑧)) ↔ (𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
97, 8bitri 275 . . . . . . . . . 10 ((𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
109exbii 1851 . . . . . . . . 9 (∃𝑤(𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ ∃𝑤(𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
11 eluni 4872 . . . . . . . . 9 (𝑥 (𝑦 ∩ 𝒫 𝑧) ↔ ∃𝑤(𝑥𝑤𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)))
12 df-rex 3071 . . . . . . . . 9 (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤(𝑤𝑦 ∧ (𝑥𝑤𝑤𝑧)))
1310, 11, 123bitr4i 303 . . . . . . . 8 (𝑥 (𝑦 ∩ 𝒫 𝑧) ↔ ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))
1413imbi2i 336 . . . . . . 7 ((𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))
1514ralbii 3093 . . . . . 6 (∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))
1615anbi2i 624 . . . . 5 ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1716rexbii 3094 . . . 4 (∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1817ralbii 3093 . . 3 (∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1918anbi2i 624 . 2 ((𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
202, 19bitri 275 1 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3061  wrex 3070  cin 3913  wss 3914  𝒫 cpw 4564   cuni 4869   class class class wbr 5109  ωcom 7806  cdom 8887  Topctop 22265  1stωc1stc 22811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-in 3921  df-ss 3931  df-pw 4566  df-uni 4870  df-1stc 22813
This theorem is referenced by:  1stcclb  22818  2ndc1stc  22825  1stcrest  22827  lly1stc  22870  tx1stc  23024  met1stc  23900
  Copyright terms: Public domain W3C validator