| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stctop | Structured version Visualization version GIF version | ||
| Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| Ref | Expression |
|---|---|
| 1stctop | ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | is1stc 23395 | . 2 ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3930 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 ωcom 7869 ≼ cdom 8965 Topctop 22847 1stωc1stc 23391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-ss 3948 df-pw 4582 df-uni 4888 df-1stc 23393 |
| This theorem is referenced by: 1stcfb 23399 1stcrest 23407 1stcelcls 23415 lly1stc 23450 1stckgen 23508 tx1stc 23604 |
| Copyright terms: Public domain | W3C validator |