MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stctop Structured version   Visualization version   GIF version

Theorem 1stctop 23476
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.)
Assertion
Ref Expression
1stctop (𝐽 ∈ 1stω → 𝐽 ∈ Top)

Proof of Theorem 1stctop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 𝐽 = 𝐽
21is1stc 23474 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
32simplbi 497 1 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070  cin 3965  𝒫 cpw 4608   cuni 4915   class class class wbr 5151  ωcom 7894  cdom 8991  Topctop 22924  1stωc1stc 23470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-ss 3983  df-pw 4610  df-uni 4916  df-1stc 23472
This theorem is referenced by:  1stcfb  23478  1stcrest  23486  1stcelcls  23494  lly1stc  23529  1stckgen  23587  tx1stc  23683
  Copyright terms: Public domain W3C validator