Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stctop | Structured version Visualization version GIF version |
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
Ref | Expression |
---|---|
1stctop | ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | is1stc 22500 | . 2 ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ωcom 7687 ≼ cdom 8689 Topctop 21950 1stωc1stc 22496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-1stc 22498 |
This theorem is referenced by: 1stcfb 22504 1stcrest 22512 1stcelcls 22520 lly1stc 22555 1stckgen 22613 tx1stc 22709 |
Copyright terms: Public domain | W3C validator |