![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stctop | Structured version Visualization version GIF version |
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
Ref | Expression |
---|---|
1stctop | ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | is1stc 23472 | . 2 ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ωcom 7905 ≼ cdom 9003 Topctop 22922 1stωc1stc 23468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 df-1stc 23470 |
This theorem is referenced by: 1stcfb 23476 1stcrest 23484 1stcelcls 23492 lly1stc 23527 1stckgen 23585 tx1stc 23681 |
Copyright terms: Public domain | W3C validator |