MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stctop Structured version   Visualization version   GIF version

Theorem 1stctop 23167
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.)
Assertion
Ref Expression
1stctop (𝐽 ∈ 1stω → 𝐽 ∈ Top)

Proof of Theorem 1stctop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 𝐽 = 𝐽
21is1stc 23165 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
32simplbi 496 1 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  wral 3059  wrex 3068  cin 3946  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  ωcom 7857  cdom 8939  Topctop 22615  1stωc1stc 23161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964  df-pw 4603  df-uni 4908  df-1stc 23163
This theorem is referenced by:  1stcfb  23169  1stcrest  23177  1stcelcls  23185  lly1stc  23220  1stckgen  23278  tx1stc  23374
  Copyright terms: Public domain W3C validator