| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stctop | Structured version Visualization version GIF version | ||
| Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
| Ref | Expression |
|---|---|
| 1stctop | ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | is1stc 23334 | . 2 ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3915 𝒫 cpw 4565 ∪ cuni 4873 class class class wbr 5109 ωcom 7844 ≼ cdom 8918 Topctop 22786 1stωc1stc 23330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-ss 3933 df-pw 4567 df-uni 4874 df-1stc 23332 |
| This theorem is referenced by: 1stcfb 23338 1stcrest 23346 1stcelcls 23354 lly1stc 23389 1stckgen 23447 tx1stc 23543 |
| Copyright terms: Public domain | W3C validator |