MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stctop Structured version   Visualization version   GIF version

Theorem 1stctop 23336
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.)
Assertion
Ref Expression
1stctop (𝐽 ∈ 1stω → 𝐽 ∈ Top)

Proof of Theorem 1stctop
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 𝐽 = 𝐽
21is1stc 23334 . 2 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))))
32simplbi 497 1 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  cin 3915  𝒫 cpw 4565   cuni 4873   class class class wbr 5109  ωcom 7844  cdom 8918  Topctop 22786  1stωc1stc 23330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3933  df-pw 4567  df-uni 4874  df-1stc 23332
This theorem is referenced by:  1stcfb  23338  1stcrest  23346  1stcelcls  23354  lly1stc  23389  1stckgen  23447  tx1stc  23543
  Copyright terms: Public domain W3C validator