![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stctop | Structured version Visualization version GIF version |
Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009.) |
Ref | Expression |
---|---|
1stctop | ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | is1stc 23344 | . 2 ⊢ (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ 1stω → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ∩ cin 3946 𝒫 cpw 4603 ∪ cuni 4908 class class class wbr 5148 ωcom 7870 ≼ cdom 8961 Topctop 22794 1stωc1stc 23340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-in 3954 df-ss 3964 df-pw 4605 df-uni 4909 df-1stc 23342 |
This theorem is referenced by: 1stcfb 23348 1stcrest 23356 1stcelcls 23364 lly1stc 23399 1stckgen 23457 tx1stc 23553 |
Copyright terms: Public domain | W3C validator |