Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem2 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem2 48929
Description: Lemma for iscnrm3rlem3 48930. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem2.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem2.2 (𝜑𝑆 𝐽)
Assertion
Ref Expression
iscnrm3rlem2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))

Proof of Theorem iscnrm3rlem2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscnrm3rlem2.1 . . 3 (𝜑𝐽 ∈ Top)
2 iscnrm3rlem2.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2729 . . . . 5 𝐽 = 𝐽
43clscld 22934 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
53clsss3 22946 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
65iscnrm3rlem1 48928 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
7 ineq1 4176 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
87rspceeqv 3611 . . . 4 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
94, 6, 8syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
101, 2, 9syl2anc 584 . 2 (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
11 difss 4099 . . 3 ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽
123restcld 23059 . . 3 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
131, 11, 12sylancl 586 . 2 (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
1410, 13mpbird 257 1 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  cin 3913  wss 3914   cuni 4871  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  Clsdccld 22903  clsccl 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cls 22908
This theorem is referenced by:  iscnrm3rlem3  48930
  Copyright terms: Public domain W3C validator