| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem3 48787. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| iscnrm3rlem2.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| Ref | Expression |
|---|---|
| iscnrm3rlem2 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3rlem2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | iscnrm3rlem2.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | clscld 23020 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 5 | 3 | clsss3 23032 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 6 | 5 | iscnrm3rlem1 48785 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 7 | ineq1 4195 | . . . . 5 ⊢ (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) | |
| 8 | 7 | rspceeqv 3629 | . . . 4 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 9 | 4, 6, 8 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 10 | 1, 2, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 11 | difss 4118 | . . 3 ⊢ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽 | |
| 12 | 3 | restcld 23145 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| 13 | 1, 11, 12 | sylancl 586 | . 2 ⊢ (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| 14 | 10, 13 | mpbird 257 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 ∪ cuni 4889 ‘cfv 6542 (class class class)co 7414 ↾t crest 17441 Topctop 22866 Clsdccld 22989 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-en 8969 df-fin 8972 df-fi 9434 df-rest 17443 df-topgen 17464 df-top 22867 df-topon 22884 df-bases 22919 df-cld 22992 df-cls 22994 |
| This theorem is referenced by: iscnrm3rlem3 48787 |
| Copyright terms: Public domain | W3C validator |