| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem3 48896. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3rlem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| iscnrm3rlem2.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| Ref | Expression |
|---|---|
| iscnrm3rlem2 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3rlem2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | iscnrm3rlem2.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | clscld 22990 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 5 | 3 | clsss3 23002 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
| 6 | 5 | iscnrm3rlem1 48894 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 7 | ineq1 4193 | . . . . 5 ⊢ (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) | |
| 8 | 7 | rspceeqv 3629 | . . . 4 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 9 | 4, 6, 8 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 10 | 1, 2, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
| 11 | difss 4116 | . . 3 ⊢ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽 | |
| 12 | 3 | restcld 23115 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| 13 | 1, 11, 12 | sylancl 586 | . 2 ⊢ (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| 14 | 10, 13 | mpbird 257 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4888 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 Topctop 22836 Clsdccld 22959 clsccl 22961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-cls 22964 |
| This theorem is referenced by: iscnrm3rlem3 48896 |
| Copyright terms: Public domain | W3C validator |