Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem2 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem2 48945
Description: Lemma for iscnrm3rlem3 48946. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem2.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem2.2 (𝜑𝑆 𝐽)
Assertion
Ref Expression
iscnrm3rlem2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))

Proof of Theorem iscnrm3rlem2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscnrm3rlem2.1 . . 3 (𝜑𝐽 ∈ Top)
2 iscnrm3rlem2.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2729 . . . . 5 𝐽 = 𝐽
43clscld 22932 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
53clsss3 22944 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
65iscnrm3rlem1 48944 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
7 ineq1 4164 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
87rspceeqv 3600 . . . 4 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
94, 6, 8syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
101, 2, 9syl2anc 584 . 2 (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
11 difss 4087 . . 3 ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽
123restcld 23057 . . 3 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
131, 11, 12sylancl 586 . 2 (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
1410, 13mpbird 257 1 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3900  cin 3902  wss 3903   cuni 4858  cfv 6482  (class class class)co 7349  t crest 17324  Topctop 22778  Clsdccld 22901  clsccl 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-en 8873  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-cls 22906
This theorem is referenced by:  iscnrm3rlem3  48946
  Copyright terms: Public domain W3C validator