Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem2 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem3 46236. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem2.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
iscnrm3rlem2 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3rlem2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | iscnrm3rlem2.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | clscld 22198 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
5 | 3 | clsss3 22210 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
6 | 5 | iscnrm3rlem1 46234 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
7 | ineq1 4139 | . . . . 5 ⊢ (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) | |
8 | 7 | rspceeqv 3575 | . . . 4 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
9 | 4, 6, 8 | syl2anc 584 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
10 | 1, 2, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
11 | difss 4066 | . . 3 ⊢ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽 | |
12 | 3 | restcld 22323 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
13 | 1, 11, 12 | sylancl 586 | . 2 ⊢ (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
14 | 10, 13 | mpbird 256 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 Clsdccld 22167 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-cls 22172 |
This theorem is referenced by: iscnrm3rlem3 46236 |
Copyright terms: Public domain | W3C validator |