Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3rlem2 Structured version   Visualization version   GIF version

Theorem iscnrm3rlem2 47663
Description: Lemma for iscnrm3rlem3 47664. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3rlem2.1 (𝜑𝐽 ∈ Top)
iscnrm3rlem2.2 (𝜑𝑆 𝐽)
Assertion
Ref Expression
iscnrm3rlem2 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))

Proof of Theorem iscnrm3rlem2
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 iscnrm3rlem2.1 . . 3 (𝜑𝐽 ∈ Top)
2 iscnrm3rlem2.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2731 . . . . 5 𝐽 = 𝐽
43clscld 22772 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
53clsss3 22784 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
65iscnrm3rlem1 47662 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
7 ineq1 4206 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
87rspceeqv 3634 . . . 4 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
94, 6, 8syl2anc 583 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
101, 2, 9syl2anc 583 . 2 (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))
11 difss 4132 . . 3 ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽
123restcld 22897 . . 3 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
131, 11, 12sylancl 585 . 2 (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
1410, 13mpbird 256 1 (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  cdif 3946  cin 3948  wss 3949   cuni 4909  cfv 6544  (class class class)co 7412  t crest 17371  Topctop 22616  Clsdccld 22741  clsccl 22743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-en 8943  df-fin 8946  df-fi 9409  df-rest 17373  df-topgen 17394  df-top 22617  df-topon 22634  df-bases 22670  df-cld 22744  df-cls 22746
This theorem is referenced by:  iscnrm3rlem3  47664
  Copyright terms: Public domain W3C validator