Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3rlem2 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3rlem3 46124. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3rlem2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
iscnrm3rlem2.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
iscnrm3rlem2 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3rlem2.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | iscnrm3rlem2.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | clscld 22106 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
5 | 3 | clsss3 22118 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ ∪ 𝐽) |
6 | 5 | iscnrm3rlem1 46122 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
7 | ineq1 4136 | . . . . 5 ⊢ (𝑐 = ((cls‘𝐽)‘𝑆) → (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) | |
8 | 7 | rspceeqv 3567 | . . . 4 ⊢ ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ (((cls‘𝐽)‘𝑆) ∖ 𝑇) = (((cls‘𝐽)‘𝑆) ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
9 | 4, 6, 8 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
10 | 1, 2, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) |
11 | difss 4062 | . . 3 ⊢ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽 | |
12 | 3 | restcld 22231 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)) ⊆ ∪ 𝐽) → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
13 | 1, 11, 12 | sylancl 585 | . 2 ⊢ (𝜑 → ((((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))) ↔ ∃𝑐 ∈ (Clsd‘𝐽)(((cls‘𝐽)‘𝑆) ∖ 𝑇) = (𝑐 ∩ (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
14 | 10, 13 | mpbird 256 | 1 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 Clsdccld 22075 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-cls 22080 |
This theorem is referenced by: iscnrm3rlem3 46124 |
Copyright terms: Public domain | W3C validator |