Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscsrg Structured version   Visualization version   GIF version

Theorem iscsrg 42003
Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.)
Hypothesis
Ref Expression
iscsrg.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscsrg (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscsrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 iscsrg.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2784 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2816 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-csring 42002 . 2 CSRing = {𝑟 ∈ SRing ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3645 1 (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  cfv 6476  CMndccmn 19687  mulGrpcmgp 20053  SRingcsrg 20099   CSRing ccsrg 42001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-csring 42002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator