Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscsrg Structured version   Visualization version   GIF version

Theorem iscsrg 41303
Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.)
Hypothesis
Ref Expression
iscsrg.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscsrg (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscsrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 iscsrg.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2789 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2817 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-csring 41302 . 2 CSRing = {𝑟 ∈ SRing ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3686 1 (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  cfv 6543  CMndccmn 19696  mulGrpcmgp 20035  SRingcsrg 20087   CSRing ccsrg 41301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-csring 41302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator