![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscsrg | Structured version Visualization version GIF version |
Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.) |
Ref | Expression |
---|---|
iscsrg.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
iscsrg | ⊢ (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6902 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
2 | iscsrg.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
4 | 3 | eleq1d 2822 | . 2 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd)) |
5 | df-csring 41911 | . 2 ⊢ CSRing = {𝑟 ∈ SRing ∣ (mulGrp‘𝑟) ∈ CMnd} | |
6 | 4, 5 | elrab2 3698 | 1 ⊢ (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ‘cfv 6559 CMndccmn 19799 mulGrpcmgp 20138 SRingcsrg 20190 CSRing ccsrg 41910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4916 df-br 5151 df-iota 6511 df-fv 6567 df-csring 41911 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |