Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscsrg Structured version   Visualization version   GIF version

Theorem iscsrg 41958
Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.)
Hypothesis
Ref Expression
iscsrg.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscsrg (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscsrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 iscsrg.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2782 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2813 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-csring 41957 . 2 CSRing = {𝑟 ∈ SRing ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3662 1 (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  CMndccmn 19710  mulGrpcmgp 20049  SRingcsrg 20095   CSRing ccsrg 41956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-csring 41957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator