Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fveq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq2 | ⊢ (𝐴 = 𝐵 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5073 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝑥 ↔ 𝐵𝐹𝑥)) | |
2 | 1 | iotabidv 6399 | . 2 ⊢ (𝐴 = 𝐵 → (℩𝑥𝐴𝐹𝑥) = (℩𝑥𝐵𝐹𝑥)) |
3 | df-fv 6423 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
4 | df-fv 6423 | . 2 ⊢ (𝐹‘𝐵) = (℩𝑥𝐵𝐹𝑥) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
Copyright terms: Public domain | W3C validator |