Proof of Theorem isdomn5
| Step | Hyp | Ref
| Expression |
| 1 | | bi2.04 387 |
. . . 4
⊢ ((¬
𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) |
| 2 | | df-ne 2934 |
. . . . 5
⊢ (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0 ) |
| 3 | 2 | imbi1i 349 |
. . . 4
⊢ ((𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
| 4 | | df-or 848 |
. . . . 5
⊢ ((𝑎 = 0 ∨ 𝑏 = 0 ) ↔ (¬ 𝑎 = 0 → 𝑏 = 0 )) |
| 5 | 4 | imbi2i 336 |
. . . 4
⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) |
| 6 | 1, 3, 5 | 3bitr4ri 304 |
. . 3
⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
| 7 | 6 | 2ralbii 3116 |
. 2
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
| 8 | | r19.21v 3166 |
. . 3
⊢
(∀𝑏 ∈
𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
| 9 | 8 | ralbii 3083 |
. 2
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
| 10 | | raldifsnb 4777 |
. 2
⊢
(∀𝑎 ∈
𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) |
| 11 | 7, 9, 10 | 3bitri 297 |
1
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) |