Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isdomn5 | Structured version Visualization version GIF version |
Description: The right conjunct in the right hand side of the equivalence of isdomn 20478 is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024.) |
Ref | Expression |
---|---|
isdomn5 | ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 388 | . . . 4 ⊢ ((¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) | |
2 | df-ne 2943 | . . . . 5 ⊢ (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0 ) | |
3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
4 | df-or 844 | . . . . 5 ⊢ ((𝑎 = 0 ∨ 𝑏 = 0 ) ↔ (¬ 𝑎 = 0 → 𝑏 = 0 )) | |
5 | 4 | imbi2i 335 | . . . 4 ⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) |
6 | 1, 3, 5 | 3bitr4ri 303 | . . 3 ⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
7 | 6 | 2ralbii 3091 | . 2 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
8 | r19.21v 3100 | . . 3 ⊢ (∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | |
9 | 8 | ralbii 3090 | . 2 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) |
10 | raldifsnb 4726 | . 2 ⊢ (∀𝑎 ∈ 𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) | |
11 | 7, 9, 10 | 3bitri 296 | 1 ⊢ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∖ cdif 3880 {csn 4558 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-ral 3068 df-v 3424 df-dif 3886 df-sn 4559 |
This theorem is referenced by: isdomn4 40100 |
Copyright terms: Public domain | W3C validator |