Proof of Theorem isdomn5
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bi2.04 387 | . . . 4
⊢ ((¬
𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) | 
| 2 |  | df-ne 2940 | . . . . 5
⊢ (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0 ) | 
| 3 | 2 | imbi1i 349 | . . . 4
⊢ ((𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | 
| 4 |  | df-or 848 | . . . . 5
⊢ ((𝑎 = 0 ∨ 𝑏 = 0 ) ↔ (¬ 𝑎 = 0 → 𝑏 = 0 )) | 
| 5 | 4 | imbi2i 336 | . . . 4
⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0 → 𝑏 = 0 ))) | 
| 6 | 1, 3, 5 | 3bitr4ri 304 | . . 3
⊢ (((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | 
| 7 | 6 | 2ralbii 3127 | . 2
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | 
| 8 |  | r19.21v 3179 | . . 3
⊢
(∀𝑏 ∈
𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | 
| 9 | 8 | ralbii 3092 | . 2
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 (𝑎 ≠ 0 → ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ 𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 ))) | 
| 10 |  | raldifsnb 4795 | . 2
⊢
(∀𝑎 ∈
𝐵 (𝑎 ≠ 0 → ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) | 
| 11 | 7, 9, 10 | 3bitri 297 | 1
⊢
(∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0 ∨ 𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏 ∈ 𝐵 ((𝑎 · 𝑏) = 0 → 𝑏 = 0 )) |