MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn5 Structured version   Visualization version   GIF version

Theorem isdomn5 20711
Description: The equivalence between the right conjuncts in the right hand sides of isdomn 20706 and isdomn2 20712, in predicate calculus form. (Contributed by SN, 16-Sep-2024.)
Assertion
Ref Expression
isdomn5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
Distinct variable group:   0 ,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem isdomn5
StepHypRef Expression
1 bi2.04 387 . . . 4 ((¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0𝑏 = 0 )))
2 df-ne 2940 . . . . 5 (𝑎0 ↔ ¬ 𝑎 = 0 )
32imbi1i 349 . . . 4 ((𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ (¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
4 df-or 848 . . . . 5 ((𝑎 = 0𝑏 = 0 ) ↔ (¬ 𝑎 = 0𝑏 = 0 ))
54imbi2i 336 . . . 4 (((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0𝑏 = 0 )))
61, 3, 53bitr4ri 304 . . 3 (((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
762ralbii 3127 . 2 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎𝐵𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
8 r19.21v 3179 . . 3 (∀𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
98ralbii 3092 . 2 (∀𝑎𝐵𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ∀𝑎𝐵 (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
10 raldifsnb 4795 . 2 (∀𝑎𝐵 (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
117, 9, 103bitri 297 1 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1539  wne 2939  wral 3060  cdif 3947  {csn 4625  (class class class)co 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-ral 3061  df-v 3481  df-dif 3953  df-sn 4626
This theorem is referenced by:  isdomn2  20712  isdomn4  20717
  Copyright terms: Public domain W3C validator