Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn5 Structured version   Visualization version   GIF version

Theorem isdomn5 40171
Description: The right conjunct in the right hand side of the equivalence of isdomn 20565 is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024.)
Assertion
Ref Expression
isdomn5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
Distinct variable group:   0 ,𝑎,𝑏
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem isdomn5
StepHypRef Expression
1 bi2.04 389 . . . 4 ((¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0𝑏 = 0 )))
2 df-ne 2944 . . . . 5 (𝑎0 ↔ ¬ 𝑎 = 0 )
32imbi1i 350 . . . 4 ((𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ (¬ 𝑎 = 0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
4 df-or 845 . . . . 5 ((𝑎 = 0𝑏 = 0 ) ↔ (¬ 𝑎 = 0𝑏 = 0 ))
54imbi2i 336 . . . 4 (((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ((𝑎 · 𝑏) = 0 → (¬ 𝑎 = 0𝑏 = 0 )))
61, 3, 53bitr4ri 304 . . 3 (((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
762ralbii 3093 . 2 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎𝐵𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
8 r19.21v 3113 . . 3 (∀𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
98ralbii 3092 . 2 (∀𝑎𝐵𝑏𝐵 (𝑎0 → ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ∀𝑎𝐵 (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
10 raldifsnb 4729 . 2 (∀𝑎𝐵 (𝑎0 → ∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
117, 9, 103bitri 297 1 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1539  wne 2943  wral 3064  cdif 3884  {csn 4561  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050  df-ral 3069  df-v 3434  df-dif 3890  df-sn 4562
This theorem is referenced by:  isdomn4  40172
  Copyright terms: Public domain W3C validator