Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn4 Structured version   Visualization version   GIF version

Theorem isdomn4 39931
Description: A ring is a domain iff it is nonzero and the cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.)
Hypotheses
Ref Expression
isdomn4.b 𝐵 = (Base‘𝑅)
isdomn4.0 0 = (0g𝑅)
isdomn4.x · = (.r𝑅)
Assertion
Ref Expression
isdomn4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐   · ,𝑐   𝑅,𝑎,𝑏,𝑐
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem isdomn4
StepHypRef Expression
1 domnnzr 20363 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 isdomn4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 isdomn4.x . . . . . . . 8 · = (.r𝑅)
4 eqid 2739 . . . . . . . 8 (-g𝑅) = (-g𝑅)
5 domnring 20364 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
65adantr 484 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Ring)
7 eldifi 4057 . . . . . . . . . 10 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎𝐵)
873ad2ant1 1135 . . . . . . . . 9 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎𝐵)
98adantl 485 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
10 simpr2 1197 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
11 simpr3 1198 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
122, 3, 4, 6, 9, 10, 11ringsubdi 19647 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · (𝑏(-g𝑅)𝑐)) = ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)))
1312eqeq1d 2741 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 ↔ ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ))
14 simpll 767 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑅 ∈ Domn)
159adantr 484 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎𝐵)
16 eldifsni 4719 . . . . . . . . . . 11 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎0 )
17163ad2ant1 1135 . . . . . . . . . 10 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎0 )
1817ad2antlr 727 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎0 )
195ringgrpd 19601 . . . . . . . . . . . 12 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
202, 4grpsubcl 18473 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2119, 20syl3an1 1165 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
22213adant3r1 1184 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2322adantr 484 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
24 simpr 488 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ≠ 0 )
25 isdomn4.0 . . . . . . . . . 10 0 = (0g𝑅)
262, 3, 25domnmuln0 20366 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ (𝑎𝐵𝑎0 ) ∧ ((𝑏(-g𝑅)𝑐) ∈ 𝐵 ∧ (𝑏(-g𝑅)𝑐) ≠ 0 )) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2714, 15, 18, 23, 24, 26syl122anc 1381 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2827ex 416 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) ≠ 0 → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 ))
2928necon4d 2966 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3013, 29sylbird 263 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3119adantr 484 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Grp)
32 id 22 . . . . . . . 8 (𝑏𝐵𝑏𝐵)
332, 3ringcl 19609 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
345, 7, 32, 33syl3an 1162 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
35343adant3r3 1186 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
36 id 22 . . . . . . . 8 (𝑐𝐵𝑐𝐵)
372, 3ringcl 19609 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
385, 7, 36, 37syl3an 1162 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
39383adant3r2 1185 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑐) ∈ 𝐵)
402, 25, 4grpsubeq0 18479 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑎 · 𝑏) ∈ 𝐵 ∧ (𝑎 · 𝑐) ∈ 𝐵) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
4131, 35, 39, 40syl3anc 1373 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
422, 25, 4grpsubeq0 18479 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4331, 10, 11, 42syl3anc 1373 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4430, 41, 433imtr3d 296 . . . 4 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
4544ralrimivvva 3115 . . 3 (𝑅 ∈ Domn → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
461, 45jca 515 . 2 (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
47 nzrring 20329 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4847ringgrpd 19601 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Grp)
492, 25grpidcl 18425 . . . . . . . . . 10 (𝑅 ∈ Grp → 0𝐵)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → 0𝐵)
5150adantr 484 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → 0𝐵)
52 oveq2 7242 . . . . . . . . . . 11 (𝑐 = 0 → (𝑎 · 𝑐) = (𝑎 · 0 ))
5352eqeq2d 2750 . . . . . . . . . 10 (𝑐 = 0 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑎 · 𝑏) = (𝑎 · 0 )))
54 eqeq2 2751 . . . . . . . . . 10 (𝑐 = 0 → (𝑏 = 𝑐𝑏 = 0 ))
5553, 54imbi12d 348 . . . . . . . . 9 (𝑐 = 0 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5655rspcv 3546 . . . . . . . 8 ( 0𝐵 → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5751, 56syl 17 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
582, 3, 25ringrz 19636 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
5947, 7, 58syl2an 599 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝑎 ∈ (𝐵 ∖ { 0 })) → (𝑎 · 0 ) = 0 )
6059adantrr 717 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (𝑎 · 0 ) = 0 )
6160eqeq2d 2750 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 0 ) ↔ (𝑎 · 𝑏) = 0 ))
6261imbi1d 345 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 ) ↔ ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6357, 62sylibd 242 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6463ralimdvva 3104 . . . . 5 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
65 isdomn5 39930 . . . . 5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
6664, 65syl6ibr 255 . . . 4 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6766imdistani 572 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
682, 3, 25isdomn 20362 . . 3 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6967, 68sylibr 237 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → 𝑅 ∈ Domn)
7046, 69impbii 212 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2942  wral 3063  cdif 3879  {csn 4557  cfv 6400  (class class class)co 7234  Basecbs 16790  .rcmulr 16833  0gc0g 16974  Grpcgrp 18395  -gcsg 18397  Ringcrg 19592  NzRingcnzr 20325  Domncdomn 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-nn 11858  df-2 11920  df-sets 16747  df-slot 16765  df-ndx 16775  df-base 16791  df-plusg 16845  df-0g 16976  df-mgm 18144  df-sgrp 18193  df-mnd 18204  df-grp 18398  df-minusg 18399  df-sbg 18400  df-mgp 19535  df-ur 19547  df-ring 19594  df-nzr 20326  df-domn 20352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator