Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn4 Structured version   Visualization version   GIF version

Theorem isdomn4 40172
Description: A ring is a domain iff it is nonzero and the cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.)
Hypotheses
Ref Expression
isdomn4.b 𝐵 = (Base‘𝑅)
isdomn4.0 0 = (0g𝑅)
isdomn4.x · = (.r𝑅)
Assertion
Ref Expression
isdomn4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐   · ,𝑐   𝑅,𝑎,𝑏,𝑐
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem isdomn4
StepHypRef Expression
1 domnnzr 20566 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 isdomn4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 isdomn4.x . . . . . . . 8 · = (.r𝑅)
4 eqid 2738 . . . . . . . 8 (-g𝑅) = (-g𝑅)
5 domnring 20567 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
65adantr 481 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Ring)
7 eldifi 4061 . . . . . . . . . 10 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎𝐵)
873ad2ant1 1132 . . . . . . . . 9 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎𝐵)
98adantl 482 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
10 simpr2 1194 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
11 simpr3 1195 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
122, 3, 4, 6, 9, 10, 11ringsubdi 19838 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · (𝑏(-g𝑅)𝑐)) = ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)))
1312eqeq1d 2740 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 ↔ ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ))
14 simpll 764 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑅 ∈ Domn)
159adantr 481 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎𝐵)
16 eldifsni 4723 . . . . . . . . . . 11 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎0 )
17163ad2ant1 1132 . . . . . . . . . 10 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎0 )
1817ad2antlr 724 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎0 )
195ringgrpd 19792 . . . . . . . . . . . 12 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
202, 4grpsubcl 18655 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2119, 20syl3an1 1162 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
22213adant3r1 1181 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2322adantr 481 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
24 simpr 485 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ≠ 0 )
25 isdomn4.0 . . . . . . . . . 10 0 = (0g𝑅)
262, 3, 25domnmuln0 20569 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ (𝑎𝐵𝑎0 ) ∧ ((𝑏(-g𝑅)𝑐) ∈ 𝐵 ∧ (𝑏(-g𝑅)𝑐) ≠ 0 )) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2714, 15, 18, 23, 24, 26syl122anc 1378 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2827ex 413 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) ≠ 0 → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 ))
2928necon4d 2967 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3013, 29sylbird 259 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3119adantr 481 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Grp)
32 id 22 . . . . . . . 8 (𝑏𝐵𝑏𝐵)
332, 3ringcl 19800 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
345, 7, 32, 33syl3an 1159 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
35343adant3r3 1183 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
36 id 22 . . . . . . . 8 (𝑐𝐵𝑐𝐵)
372, 3ringcl 19800 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
385, 7, 36, 37syl3an 1159 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
39383adant3r2 1182 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑐) ∈ 𝐵)
402, 25, 4grpsubeq0 18661 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑎 · 𝑏) ∈ 𝐵 ∧ (𝑎 · 𝑐) ∈ 𝐵) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
4131, 35, 39, 40syl3anc 1370 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
422, 25, 4grpsubeq0 18661 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4331, 10, 11, 42syl3anc 1370 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4430, 41, 433imtr3d 293 . . . 4 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
4544ralrimivvva 3127 . . 3 (𝑅 ∈ Domn → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
461, 45jca 512 . 2 (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
47 nzrring 20532 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4847ringgrpd 19792 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Grp)
492, 25grpidcl 18607 . . . . . . . . . 10 (𝑅 ∈ Grp → 0𝐵)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → 0𝐵)
5150adantr 481 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → 0𝐵)
52 oveq2 7283 . . . . . . . . . . 11 (𝑐 = 0 → (𝑎 · 𝑐) = (𝑎 · 0 ))
5352eqeq2d 2749 . . . . . . . . . 10 (𝑐 = 0 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑎 · 𝑏) = (𝑎 · 0 )))
54 eqeq2 2750 . . . . . . . . . 10 (𝑐 = 0 → (𝑏 = 𝑐𝑏 = 0 ))
5553, 54imbi12d 345 . . . . . . . . 9 (𝑐 = 0 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5655rspcv 3557 . . . . . . . 8 ( 0𝐵 → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5751, 56syl 17 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
582, 3, 25ringrz 19827 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
5947, 7, 58syl2an 596 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝑎 ∈ (𝐵 ∖ { 0 })) → (𝑎 · 0 ) = 0 )
6059adantrr 714 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (𝑎 · 0 ) = 0 )
6160eqeq2d 2749 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 0 ) ↔ (𝑎 · 𝑏) = 0 ))
6261imbi1d 342 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 ) ↔ ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6357, 62sylibd 238 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6463ralimdvva 3126 . . . . 5 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
65 isdomn5 40171 . . . . 5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
6664, 65syl6ibr 251 . . . 4 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6766imdistani 569 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
682, 3, 25isdomn 20565 . . 3 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6967, 68sylibr 233 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → 𝑅 ∈ Domn)
7046, 69impbii 208 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  0gc0g 17150  Grpcgrp 18577  -gcsg 18579  Ringcrg 19783  NzRingcnzr 20528  Domncdomn 20551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-nzr 20529  df-domn 20555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator