MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn4 Structured version   Visualization version   GIF version

Theorem isdomn4 21206
Description: A ring is a domain iff it is nonzero and the cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.)
Hypotheses
Ref Expression
isdomn4.b 𝐵 = (Base‘𝑅)
isdomn4.0 0 = (0g𝑅)
isdomn4.x · = (.r𝑅)
Assertion
Ref Expression
isdomn4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐   · ,𝑐   𝑅,𝑎,𝑏,𝑐
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem isdomn4
StepHypRef Expression
1 domnnzr 21199 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 isdomn4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 isdomn4.x . . . . . . . 8 · = (.r𝑅)
4 eqid 2731 . . . . . . . 8 (-g𝑅) = (-g𝑅)
5 domnring 21200 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
65adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Ring)
7 eldifi 4126 . . . . . . . . . 10 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎𝐵)
873ad2ant1 1132 . . . . . . . . 9 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎𝐵)
98adantl 481 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
10 simpr2 1194 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
11 simpr3 1195 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
122, 3, 4, 6, 9, 10, 11ringsubdi 20202 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · (𝑏(-g𝑅)𝑐)) = ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)))
1312eqeq1d 2733 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 ↔ ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ))
14 simpll 764 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑅 ∈ Domn)
159adantr 480 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎𝐵)
16 eldifsni 4793 . . . . . . . . . . 11 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎0 )
17163ad2ant1 1132 . . . . . . . . . 10 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎0 )
1817ad2antlr 724 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎0 )
195ringgrpd 20143 . . . . . . . . . . . 12 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
202, 4grpsubcl 18946 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2119, 20syl3an1 1162 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
22213adant3r1 1181 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2322adantr 480 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
24 simpr 484 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ≠ 0 )
25 isdomn4.0 . . . . . . . . . 10 0 = (0g𝑅)
262, 3, 25domnmuln0 21202 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ (𝑎𝐵𝑎0 ) ∧ ((𝑏(-g𝑅)𝑐) ∈ 𝐵 ∧ (𝑏(-g𝑅)𝑐) ≠ 0 )) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2714, 15, 18, 23, 24, 26syl122anc 1378 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2827ex 412 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) ≠ 0 → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 ))
2928necon4d 2963 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3013, 29sylbird 260 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3119adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Grp)
32 id 22 . . . . . . . 8 (𝑏𝐵𝑏𝐵)
332, 3ringcl 20151 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
345, 7, 32, 33syl3an 1159 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
35343adant3r3 1183 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
36 id 22 . . . . . . . 8 (𝑐𝐵𝑐𝐵)
372, 3ringcl 20151 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
385, 7, 36, 37syl3an 1159 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
39383adant3r2 1182 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑐) ∈ 𝐵)
402, 25, 4grpsubeq0 18952 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑎 · 𝑏) ∈ 𝐵 ∧ (𝑎 · 𝑐) ∈ 𝐵) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
4131, 35, 39, 40syl3anc 1370 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
422, 25, 4grpsubeq0 18952 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4331, 10, 11, 42syl3anc 1370 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4430, 41, 433imtr3d 293 . . . 4 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
4544ralrimivvva 3202 . . 3 (𝑅 ∈ Domn → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
461, 45jca 511 . 2 (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
47 nzrring 20414 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4847ringgrpd 20143 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Grp)
492, 25grpidcl 18893 . . . . . . . . . 10 (𝑅 ∈ Grp → 0𝐵)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → 0𝐵)
5150adantr 480 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → 0𝐵)
52 oveq2 7420 . . . . . . . . . . 11 (𝑐 = 0 → (𝑎 · 𝑐) = (𝑎 · 0 ))
5352eqeq2d 2742 . . . . . . . . . 10 (𝑐 = 0 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑎 · 𝑏) = (𝑎 · 0 )))
54 eqeq2 2743 . . . . . . . . . 10 (𝑐 = 0 → (𝑏 = 𝑐𝑏 = 0 ))
5553, 54imbi12d 344 . . . . . . . . 9 (𝑐 = 0 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5655rspcv 3608 . . . . . . . 8 ( 0𝐵 → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5751, 56syl 17 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
582, 3, 25ringrz 20189 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
5947, 7, 58syl2an 595 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝑎 ∈ (𝐵 ∖ { 0 })) → (𝑎 · 0 ) = 0 )
6059adantrr 714 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (𝑎 · 0 ) = 0 )
6160eqeq2d 2742 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 0 ) ↔ (𝑎 · 𝑏) = 0 ))
6261imbi1d 341 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 ) ↔ ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6357, 62sylibd 238 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6463ralimdvva 3203 . . . . 5 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
65 isdomn5 21205 . . . . 5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
6664, 65imbitrrdi 251 . . . 4 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6766imdistani 568 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
682, 3, 25isdomn 21198 . . 3 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6967, 68sylibr 233 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → 𝑅 ∈ Domn)
7046, 69impbii 208 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  cdif 3945  {csn 4628  cfv 6543  (class class class)co 7412  Basecbs 17151  .rcmulr 17205  0gc0g 17392  Grpcgrp 18861  -gcsg 18863  Ringcrg 20134  NzRingcnzr 20410  Domncdomn 21184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-nzr 20411  df-domn 21188
This theorem is referenced by:  domnlcan  32811
  Copyright terms: Public domain W3C validator