MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn4 Structured version   Visualization version   GIF version

Theorem isdomn4 20738
Description: A ring is a domain iff it is nonzero and the left cancellation law for multiplication holds. (Contributed by SN, 15-Sep-2024.)
Hypotheses
Ref Expression
isdomn4.b 𝐵 = (Base‘𝑅)
isdomn4.0 0 = (0g𝑅)
isdomn4.x · = (.r𝑅)
Assertion
Ref Expression
isdomn4 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐   · ,𝑐   𝑅,𝑎,𝑏,𝑐
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem isdomn4
StepHypRef Expression
1 domnnzr 20728 . . 3 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
2 isdomn4.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 isdomn4.x . . . . . . . 8 · = (.r𝑅)
4 eqid 2740 . . . . . . . 8 (-g𝑅) = (-g𝑅)
5 domnring 20729 . . . . . . . . 9 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
65adantr 480 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Ring)
7 eldifi 4154 . . . . . . . . . 10 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎𝐵)
873ad2ant1 1133 . . . . . . . . 9 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎𝐵)
98adantl 481 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑎𝐵)
10 simpr2 1195 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑏𝐵)
11 simpr3 1196 . . . . . . . 8 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑐𝐵)
122, 3, 4, 6, 9, 10, 11ringsubdi 20330 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · (𝑏(-g𝑅)𝑐)) = ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)))
1312eqeq1d 2742 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 ↔ ((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ))
14 simpll 766 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑅 ∈ Domn)
159adantr 480 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎𝐵)
16 eldifsni 4815 . . . . . . . . . . 11 (𝑎 ∈ (𝐵 ∖ { 0 }) → 𝑎0 )
17163ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵) → 𝑎0 )
1817ad2antlr 726 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → 𝑎0 )
195ringgrpd 20269 . . . . . . . . . . . 12 (𝑅 ∈ Domn → 𝑅 ∈ Grp)
202, 4grpsubcl 19060 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2119, 20syl3an1 1163 . . . . . . . . . . 11 ((𝑅 ∈ Domn ∧ 𝑏𝐵𝑐𝐵) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
22213adant3r1 1182 . . . . . . . . . 10 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
2322adantr 480 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ∈ 𝐵)
24 simpr 484 . . . . . . . . 9 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑏(-g𝑅)𝑐) ≠ 0 )
25 isdomn4.0 . . . . . . . . . 10 0 = (0g𝑅)
262, 3, 25domnmuln0 20731 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ (𝑎𝐵𝑎0 ) ∧ ((𝑏(-g𝑅)𝑐) ∈ 𝐵 ∧ (𝑏(-g𝑅)𝑐) ≠ 0 )) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2714, 15, 18, 23, 24, 26syl122anc 1379 . . . . . . . 8 (((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) ∧ (𝑏(-g𝑅)𝑐) ≠ 0 ) → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 )
2827ex 412 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) ≠ 0 → (𝑎 · (𝑏(-g𝑅)𝑐)) ≠ 0 ))
2928necon4d 2970 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · (𝑏(-g𝑅)𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3013, 29sylbird 260 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 → (𝑏(-g𝑅)𝑐) = 0 ))
3119adantr 480 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → 𝑅 ∈ Grp)
32 id 22 . . . . . . . 8 (𝑏𝐵𝑏𝐵)
332, 3ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
345, 7, 32, 33syl3an 1160 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
35343adant3r3 1184 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
36 id 22 . . . . . . . 8 (𝑐𝐵𝑐𝐵)
372, 3ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
385, 7, 36, 37syl3an 1160 . . . . . . 7 ((𝑅 ∈ Domn ∧ 𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑐𝐵) → (𝑎 · 𝑐) ∈ 𝐵)
39383adant3r2 1183 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (𝑎 · 𝑐) ∈ 𝐵)
402, 25, 4grpsubeq0 19066 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑎 · 𝑏) ∈ 𝐵 ∧ (𝑎 · 𝑐) ∈ 𝐵) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
4131, 35, 39, 40syl3anc 1371 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → (((𝑎 · 𝑏)(-g𝑅)(𝑎 · 𝑐)) = 0 ↔ (𝑎 · 𝑏) = (𝑎 · 𝑐)))
422, 25, 4grpsubeq0 19066 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑏𝐵𝑐𝐵) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4331, 10, 11, 42syl3anc 1371 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑏(-g𝑅)𝑐) = 0𝑏 = 𝑐))
4430, 41, 433imtr3d 293 . . . 4 ((𝑅 ∈ Domn ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵𝑐𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
4544ralrimivvva 3211 . . 3 (𝑅 ∈ Domn → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐))
461, 45jca 511 . 2 (𝑅 ∈ Domn → (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
47 nzrring 20542 . . . . . . . . . . 11 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
4847ringgrpd 20269 . . . . . . . . . 10 (𝑅 ∈ NzRing → 𝑅 ∈ Grp)
492, 25grpidcl 19005 . . . . . . . . . 10 (𝑅 ∈ Grp → 0𝐵)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → 0𝐵)
5150adantr 480 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → 0𝐵)
52 oveq2 7456 . . . . . . . . . . 11 (𝑐 = 0 → (𝑎 · 𝑐) = (𝑎 · 0 ))
5352eqeq2d 2751 . . . . . . . . . 10 (𝑐 = 0 → ((𝑎 · 𝑏) = (𝑎 · 𝑐) ↔ (𝑎 · 𝑏) = (𝑎 · 0 )))
54 eqeq2 2752 . . . . . . . . . 10 (𝑐 = 0 → (𝑏 = 𝑐𝑏 = 0 ))
5553, 54imbi12d 344 . . . . . . . . 9 (𝑐 = 0 → (((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) ↔ ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5655rspcv 3631 . . . . . . . 8 ( 0𝐵 → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
5751, 56syl 17 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 )))
582, 3, 25ringrz 20317 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
5947, 7, 58syl2an 595 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝑎 ∈ (𝐵 ∖ { 0 })) → (𝑎 · 0 ) = 0 )
6059adantrr 716 . . . . . . . . 9 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (𝑎 · 0 ) = 0 )
6160eqeq2d 2751 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → ((𝑎 · 𝑏) = (𝑎 · 0 ) ↔ (𝑎 · 𝑏) = 0 ))
6261imbi1d 341 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (((𝑎 · 𝑏) = (𝑎 · 0 ) → 𝑏 = 0 ) ↔ ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6357, 62sylibd 239 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑎 ∈ (𝐵 ∖ { 0 }) ∧ 𝑏𝐵)) → (∀𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ((𝑎 · 𝑏) = 0𝑏 = 0 )))
6463ralimdvva 3212 . . . . 5 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 )))
65 isdomn5 20732 . . . . 5 (∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 )) ↔ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵 ((𝑎 · 𝑏) = 0𝑏 = 0 ))
6664, 65imbitrrdi 252 . . . 4 (𝑅 ∈ NzRing → (∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐) → ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6766imdistani 568 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
682, 3, 25isdomn 20727 . . 3 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎𝐵𝑏𝐵 ((𝑎 · 𝑏) = 0 → (𝑎 = 0𝑏 = 0 ))))
6967, 68sylibr 234 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)) → 𝑅 ∈ Domn)
7046, 69impbii 209 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑎 ∈ (𝐵 ∖ { 0 })∀𝑏𝐵𝑐𝐵 ((𝑎 · 𝑏) = (𝑎 · 𝑐) → 𝑏 = 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  -gcsg 18975  Ringcrg 20260  NzRingcnzr 20538  Domncdomn 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-domn 20717
This theorem is referenced by:  isdomn4r  20741  domnlcanb  20742  domnlcanOLD  33249
  Copyright terms: Public domain W3C validator